
Measuring GPU utilization one level deeper
Paul Elvinger

ETH Zurich
Switzerland

Foteini Strati
ETH Zurich
Switzerland

Natalie Enright Jerger
University of Toronto

Canada

Ana Klimovic
ETH Zurich
Switzerland

ABSTRACT
GPUhardware is vastly underutilized. Even resource-intensive
AI applications have diverse resource profiles that often leave
parts of GPUs idle. While colocating applications can im-
prove utilization, current spatial sharing systems lack perfor-
mance guarantees. Providing predictable performance guar-
antees requires a deep understanding of how applications
contend for shared GPU resources such as block schedulers,
compute units, L1/L2 caches, and memory bandwidth. We
propose a methodology to profile resource interference of
GPU kernels across these dimensions and discuss how to
build GPU schedulers that provide strict performance guar-
antees while colocating applications to minimize cost.

1 INTRODUCTION
Graphics Processing Units (GPUs) are widely used for appli-
cations like AI training and inference to maximize perfor-
mance per Watt. However, GPUs are expensive and power-
hungry, with AI workloads’ power needs composing a signif-
icant percentage of datacenter grids [38, 40, 42]. To minimize
total cost of ownership and make optimal use of the limited
power budget, users should operate GPU clusters at high uti-
lization. Yet many recent studies show that GPUs are vastly
underutilized [6, 8, 9, 15, 43, 45, 48, 57]. Even when serving
GB-scale LLMswith large batch sizes, someGPU components
may be idle as resource requirements vary across compute
vs. memory intensive phases of a job [12, 59]. For example,
Microsoft reports less than 10% compute utilization during
the memory-bound decoding phase of serving the Llama3-8B
model on A100 GPUs [12]. GPUs can also be underutilized
due to small batch sizes, communication, data preprocessing
bottlenecks, and checkpointing [6, 7, 54].

GPU utilization can be improved with spatial colocation of
multiple applications, that is, allowing more than one work-
load to execute on a GPU concurrently [8, 9, 13, 15, 41, 43, 57].
However, colocating applications leads to interference; this
resource contention increases the execution time of individ-
ual GPU kernels. While prior GPU schedulers that support

spatial sharing aim to minimize interference, no system cur-
rently provides reliable performance guarantees. Most sys-
tems rely on limited metrics to evaluate GPU resource utiliza-
tion and define colocation strategies. For example, Orion [43]
uses the SM utilization and roofline models of individual ker-
nels to colocate kernels with complementary resource pro-
files. Usher [41] considers each kernel’s achieved occupancy
as an indicator of the kernel’s computational requirements,
and requires the sum of achieved occupancy values to be
lower than 100% for colocation. However, as we show in §3,
these state-of-the-art systems oversimplify GPU utilization
and interference modeling, resulting in colocation decisions
that can significantly degrade application performance.
Inspired by Ousterhout’s advice to always measure one

level deeper [37] and the iBench [5] microbenchmark suite
for quantifying interference on datacenter CPU servers, we
conduct a series of experiments to more deeply understand
GPU utilization and its role in the design of GPU scheduling
systems. GPUs are inherently heterogeneous, comprising var-
ious components such as streaming multiprocessors, warp
schedulers, tensor cores, high-bandwidth memory, caches,
and register files. We use microbenchmarks1 to demonstrate
the different resources where interference can occur, and
explain how users can identify whether a kernel is suscep-
tible to each kind of interference. Finally, we discuss how
our insights pave the way to designing software and hard-
ware GPU schedulers that effectively colocate applications to
reduce cost while providing strict performance guarantees.

2 BACKGROUND
We describe the internal architecture of GPUs, introducing
terminology and utilization metrics that we will refer to later.

2.1 GPU hardware overview
GPU architecture: Figure 1 depicts a modern GPU.2 GPUs
consist of multiple clusters of Streaming Multiprocessors
(SMs). Each SM consists of subpartitions (SMSP) that contain

1Our code is available at https://github.com/eth-easl/gpu-util-interference
2We focus on NVIDIA GPUs and terminology in this paper. AMD GPUs
follow similar architecture [1], and provide tools such as Omniperf to get
insights about kernels’ execution [2].

1

ar
X

iv
:2

50
1.

16
90

9v
2 

 [
cs

.D
C

] 
 1

2 
Fe

b 
20

25

https://orcid.org/0009-0000-6025-844X
https://orcid.org/0000-0003-3364-2109
https://orcid.org/0000-0002-0526-2080
https://orcid.org/0000-0001-8559-0529
https://github.com/eth-easl/gpu-util-interference


a warp scheduler (which can schedule 32 threads/cycle), an
L0 instruction cache, a register file, and various compute
units for different data types (e.g., int32, fp32) and different
operations, referred to as pipelines (e.g., tensor cores) [36].
The mapping of pipelines to compute units is hidden from
users, though there have been attempts to reverse engineer
it [18, 23, 24, 32]. The GPU also contains a main memory,
shared by all SMs, and accessed through a two-level on-chip
cache hierarchy. The L2 cache is shared across all SMs, while
the L1 cache is private to each SM and shared among its
subpartitions. The L1 cache can partially be configured as
software-defined shared memory [22].
Threads, blocks, and warps. GPU programs consist of

CUDA kernels, which are executed by one or more GPU
threads [20]. From a software perspective, GPU threads are
grouped into blocks, which are arranged in a grid. Each
thread has access to a set of registers and shared memory
for its whole lifetime. Threads in a block can communicate
through shared memory and can synchronize using barriers
or other atomic operations. At the hardware level, the GPU
executes threads in groups called warps, typically consist-
ing of 32 threads. Each kernel is associated with a CUDA
stream, which defines sequential execution of operations.
If enough resources are available, kernels launched from
multiple streams can execute concurrently.

GPU scheduling: NVIDIA GPUs schedule kernels at mul-
tiple levels. First, the thread block scheduler will map thread
blocks to SMs. A block remains on an SM until all its threads
complete execution. Scheduling is constrained by SM re-
source limits (max number of blocks, threads, registers, and
shared memory). A block will be scheduled on an SM only
if that SM has enough resources left to accommodate all
threads of that block. Once a block is scheduled on an SM,
its warps are assigned to one of the subpartitions and are
considered active. Second, at the subpartition level, active
warps are divided into eligible and stalled warps based on
their ability to issue an instruction. A warp is eligible if its
instruction has been fetched, all dependencies are met, and
the required functional units are available. Each clock cycle,
the warp scheduler in each subpartition chooses one eligible
warp and schedules one or more instructions from that warp.

2.2 Utilization metrics
We describe several GPU utilization metrics reported by
NVIDIA tools such as Nsight Compute (NCU) [25].
GPU utilization from nvidia-smi/NVML [28, 30] de-

picts the percentage of time a kernel is active on a GPU,
without revealing how well this kernel utilizes the various
GPU resources. This metric is used by various works [3, 10,
46, 50, 51].

Figure 1: Simplified diagram of an NVIDIA GPU (based
on an H100), focusing on a Streaming Multiprocessor.

SM utilization refers to the amount of SMs needed by a
kernel, and can be found by taking into account the kernel’s
grid size, block size, registers/thread, shared memory/thread
and the respective SM thresholds of a GPU (as explained in
2.1). Orion [43] and REEF [9] use this metric.

Arithmetic intensity refers to the ratio of floating-point
operations to total data movement, and can be found using
NCU’s roofline model [31]. Orion [43] uses this metric to
classify kernels as compute-bound or memory-bound.

Achieved Occupancy measures how many active warps
exist per SM per clock cycle on average [33, 35] and is ob-
tained by NCU, using the sm__warps_active.avg.pct_of_
peak_sustained_active metric. It is used by Usher [41].

Pipe utilization captures the utilization of GPU pipelines
(FMA, Tensor Cores, etc). We take the sm__inst_executed
_pipe_*.avg.pct_of_peak_sustained_activemetric from
NCU (where * indicates the pipeline, e.g. fma, tensor). It ex-
presses how effectively a pipeline is used (when executing
at least one warp) relative to its peak capability, averaged
across all SMs that executed at least one warp.
Issued instructions per cycle (IPC): The NCU met-

ric sm__inst_issued.avg.per_cycle_active (also called
IPC [34]) represents the number of warp instructions issued
per cycle per SM. This metric averages IPC across all ac-
tive SMs (i.e., SMs that have at least one warp scheduled
on them). Our GPUs have 4 subpartitions per SM, and each
subpartition has a warp scheduler capable of issuing one
warp instruction per cycle, i.e the maximum IPC per SM is 4.

GPU workload distribution: The sm__cycles_active
.[avg/min/max]metric from NCUmeasures the cycles with
at least one active warp per SM, assessing kernel execution
balance across SMs. Large discrepancies between average,
minimum, and maximum values indicate unbalanced GPU
utilization, with SMs idling. Metrics as IPC, pipe utilization
and achieved occupancy should be combined with workload
distribution to ensure balanced workload partitioning.

2



3 PITFALLS OF GPU SCHEDULERS
Multiple GPU schedulers aim to improve utilization by colo-
catingworkloads. Temporal-sharing schedulers, such as Clock-
work [8], Gandiva [47], Salus [52], Antman [48], and TGS [46]
execute oneworkload at a time to avoid resource interference,
but fail to address single-workload GPU underutilization,
and can cause severe queuing delays [43]. In contrast, spatial
sharing systems such as Usher [41], Orion [43], REEF [9],
Igniter [49], Missile [53], and Zico [14] allow concurrent
workload execution, and propose strategies to minimize in-
terference. We identify common pitfalls in state-of-the-art
GPU schedulers, caused by their reliance on only a subset of
GPU metrics, leading to a lack of performance guarantees.
Pitfall 1: Not taking IPC into account: The issued in-

structions per cycle (IPC) metric (see §2.2) measures warp
scheduler utilization. Ignoring IPC can lead to severe inter-
ference. We illustrate the significance of IPC using the Orion
scheduler [43] as an example. Orion colocates kernels with
complementary resource profiles (i.e., compute vs. memory
bound kernels), which it determines based on arithmetic in-
tensity. While arithmetic intensity correlates with IPC, Orion
overlooks cases where a compute kernel’s IPC is too high
and will interfere with any other colocated kernel.

To demonstrate this, we use a compute and a copy kernel,
which perform independent element-wise fp32 multiplica-
tion and array copying, respectively, for several iterations.
We use a 4096-byte input array for compute and a 4GB input
and output array for copy. We tune the number of iterations
so that the two kernels have similar execution times. We
launch the kernels with 132 blocks and 1024 threads/block.
Using NCU, we confirm that compute is compute-bound and
copy is memory-bound, thus Orion would colocate them,
expecting low interference. However, we observe that the ex-
ecution time of copy doubles under colocation. NCU shows
that compute has an IPC of 4, which leads to warp scheduling
interference, as we will detail in §4.2.2.
Pitfall 2: Relying on achieved occupancy: Another

pitfall is relying on a single metric, such as achieved occu-
pancy, to assess a kernel’s compute requirements. Achieved
occupancy can be misleading, as a kernel can saturate GPU
resources even with low achieved occupancy. For instance,
Usher [41] colocates two kernels if the sum of achieved oc-
cupancy values is < 100%. As a counterexample, we launch
two instances of the compute kernel (same as the previous
example), with 132 blocks and 128 threads/block per ker-
nel. NCU reports an achieved occupancy of 6.25% per ker-
nel, suggesting that colocation should not result in perfor-
mance degradation. We show two counter-examples. First,
we follow Usher’s suggestion of constraining each kernel to
a percentage of SMs equal to its achieved occupancy. Thus,
we limit each kernel to 6.25% of the GPU SMs, setting the

NVIDIA GPU Num SMs CUDA version Driver version

H100 NVL [27] 132 12.5 555.42.06
GeForce RTX3090 [19] 82 12.6 560.35.03

Table 1: Hardware Setup used in all experiments.

CUDA_MPS_ACTIVE_THREAD_PERCENTAGE [17] variable. We
observe a 15.8× increase in each kernel’s latency indicat-
ing that the number of SMs needed is not aligned with the
achieved occupancy. Second, we run both kernels concur-
rently with the same launch configuration in separate CUDA
streams and let them use all available SMs. We observe a
1.85× increase in each kernel’s latency, despite their low
achieved occupancy. These examples indicate that predict-
ing interference and required compute resources based only
on the number of active warps is not sufficient.

We demonstrated two key pitfalls in state-of-the-art sched-
ulers, but to our knowledge, the problem of focusing on only
a subset of GPU resources is common among all schedulers.
For example, REEF [9] considers only SM utilization but
overlooks L2 cache or memory bandwidth interference (see
§4.1). Approaches relying on nvidia-smi to measure GPU
utilization [3, 10, 46, 50, 51] might falsely consider a GPU
fully utilized even if only a single SM is occupied. These
observations raise the question: how to accurately measure
GPU utilization and estimate interference?

4 GPU INTERFERENCE ANALYSIS
We highlight the main GPU resources where interference
can occur, both across SMs (§4.1) and within an SM (§4.2). An
interference-aware GPU scheduler should take all these re-
sources into account to give reliable performance guarantees.
We demonstrate interference at each level with microbench-
marks, and explain how users can identify whether a kernel
is susceptible to this kind of interference. Finally, we show
an example of how our methodology can identify which
types of interference a real kernel from a representative AI
workload is susceptible to (§4.3). Table 1 shows our hardware
setup. Unless otherwise stated, all experiments use CUDA
streams [16] for colocating two kernels on the GPU.

4.1 Inter-SM interference
4.1.1 Block scheduler interference. As described in §2, the
block scheduler assigns blocks to SMs, as long as they meet
all resource constraints. When any of these SM resources
are insufficient, it schedules blocks sequentially as resources
free up, increasing latency. We demonstrate this on an H100
GPU using a kernel that iteratively calls the nanosleep func-
tion [21]. We launch two instances of this kernel, each with
1024 threads per block (allowing each SM to host up to 2

3



7.5 15.0 22.5 30.0 37.5
Array input/output size [MB]

0

1

2

Sl
ow

do
wn

[c
ol

/a
lo

ne
]

Slowdown L2 Hit Rate
0

50

100

L2
 H

it 
Ra

te
 [%

]
wh

en
 ru

n 
al

on
e

Figure 2: L2 cache interference on an H100

blocks). NCU reveals low IPC (< 0.2) and pipe utilization
for each kernel. With 132 thread blocks per kernel, the two
kernels execute in different streams with perfect overlap,
showing no interference. However, when launching with
264 thread blocks per kernel, the colocated kernel latency
matches the sequential kernel latency, despite the kernel’s
minimal resource usage. This is due to a single kernel sat-
urating the 2048 threads/SM limit on the H100, preventing
concurrent block execution between kernels. The metrics
launch__occupancy_limit_[blocks/warps/registers/
shared_mem] in NCU provide insights into a kernel’s sus-
ceptibility to block scheduler interference.

4.1.2 L2 cache interference. To examine interference in the
L2 cache (shared between SMs), we colocate two instances of
the copy kernel (from §3) on the H100, each using 66 thread
blocks and 1024 threads. This allows both kernels to run
on separate SMs, eliminating intra-SM interference. Figure
2 shows the slowdown of the copy kernel when colocated
compared to running alone as array size increases. For small
arrays, colocation causes minimal performance impact. How-
ever, the slowdown increases until an array size of 22.5MB,
reaching 1.79×, indicating L2 cache interference. After this
point, the kernel’s L2 cache hit rate in isolation starts to
drop significantly, meaning that the kernel will have to go
through main memory due to L2 cache misses. This reduces
the impact of additional L2 contention, caused by colocation.
This is why the slowdown is reduced after that point.

We observe a correlation between L2 cache hit rate and
susceptibility to L2 cache interference. Thus, for identifying
a kernel’s sensitivity to L2 cache interference, the L2 hit rate
from NCU (lts__t_sector_hit_rate.pct) can be used.

4.1.3 Memory bandwidth interference. To examine memory
bandwidth interference, we colocate two instances of the
copy kernel in separate processes, each copying a 4GB input
array (exceeding L2 cache size).We useMPS to allocate a non-
overlapping set of 50% of SMs to each process to eliminate
intra-SM interference. Table 2 shows the slowdown of the
copy kernel compared to running alone as we increase the

Thread Blocks / Kernel H100 33 66 99 132

Memory Bandwidth Utilization [%] 21.33 40.12 55.06 69.18
Slowdown [col/alone] 1.06 1.14 1.23 1.36

Thread Blocks / Kernel RTX3090 10 20 40 80

Memory Bandwidth Utilization [%] 24.48 45.34 71.96 90.69
Slowdown [col/alone] 1.06 1.27 1.61 1.91

Table 2: Memory Bandwidth Interference. Slowdown
of copy kernel under colocation over running alone on
H100/RTX3090 on 50% of the SMs using MPS. Reported
Memory Bandwidth Utilization is relative to the high-
est actual achieved memory bandwidth.

number of thread blocks. 3 On the RTX3090, a single process
achieves up to 90% of the max memory bandwidth when run
alone. It suffers from an approximate 1.9× slowdown when
colocated. On the H100, a single process achieves around
69% of the max memory bandwidth, and suffers from a 1.36×
slowdown when colocated. Thus, despite kernels running on
distinct sets of SMs, theymay suffer frommemory bandwidth
interference, as found in prior works [13, 43, 53].

NCU’s memory bandwidth utilization metric follows our
measured utilization trends (i.e. increases with grid size), but
is lower (e.g. 42% with 132 blocks on the H100), due to the
actual achieved maximum memory bandwidth being lower
than the theoretical. We recommend using our microbench-
mark to identify if a kernel is susceptible to memory band-
width interference, as NCU might underestimate a kernel’s
memory bandwidth usage.

4.2 Intra-SM interference
4.2.1 L1 Cache Interference. The L1 cache, shared among
SM subpartitions, can create contention between colocated
kernels. To demonstrate this, we colocate two instances of
the copy kernel. We make sure each thread block accesses
memory aligned to 256KB.4 Figure 3 shows the average la-
tency for colocated or sequential execution of two kernels.
We launch them with 132 thread blocks and 64 threads per
block each, to ensure that no two warps run on the same
SMSP thereby eliminating any source of interference from
within the SMSP. Colocation is beneficial over sequential exe-
cution for arrays smaller than 64KB, but not when input and
output arrays exceed the L1 cache (256KB). Sequential exe-
cution sees an inflection at 108KB, while colocation shows it
at the half point (54KB) due to processing double the data.
Thus, kernel colocation can substantially increase L1 cache
misses and lead to performance degradation. To detect if a

3Setting an MPS share of 50% on the RTX3090 will result in 40 SMs available
to the process.
4The unified L1 cache size on the H100.

4



32 54 64 96 108 128
Array input/output size [KB]

0

2

4

Av
g 

La
te

nc
y 

[s
]

Colocated
Sequential
L1 Hit Rate

0

50

100

Se
qu

en
tia

l
L1

 H
it 

Ra
te

 [%
]

Figure 3: L1 cache interference on an H100

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

IPC compute [instr/cycle/SM] 1.08 2.06 2.9 3.45 4
Speedup [seq/col] 1.915 1.896 1.893 1.65 1.001

Table 3: IPC Interference on H100. Speedup of colocat-
ing copy and compute over running them sequentially.

kernel is susceptible to L1 cache interference, a user can look
at the L1 cache hit rate (l1tex__t_sector_hit_rate.pct).

4.2.2 IPC interference. We demonstrate how the architec-
tural limit of 4 instr/cycle/SM can become a bottleneck, using
the copy kernel and modified versions of the compute kernel
across five scenarios, shown in Table 3. copy processes a 4GB
array using 132 thread blocks and 1024 threads per block,
maintaining an IPC of 0.61 across all scenarios. In scenarios
𝑆1-𝑆4 we increase Instruction Level Parallelism (ILP) for the
compute kernel from 1 to 4 independent __fmul_rn[29] op-
erations and launch it with 132 blocks and 128 threads/block,
ensuring one warp per SMSP. 𝑆5 maintains four operations
but doubles the thread count to 256. Higher ILP or increased
threads per block increase IPC. We adjusted iteration counts
for comparable colocated runtimes across all scenarios. Table
3 shows a colocation speedup of 1.9× while the aggregated
IPC remains below 4. However, the speedup diminishes in 𝑆4,
when 𝐼𝑃𝐶 > 4, disappearing entirely in 𝑆5 (the Orion exam-
ple from §3). This demonstrates warp scheduler interference
between compute-bound andmemory-bound kernels despite
their distinct resource dependencies.

4.2.3 Pipeline interference. To demonstrate pipeline inter-
ference, we modify our compute kernel to utilize fp64 mul-
tiplication __dmul_rn [26]. We examine scenarios 𝑆1 to 𝑆4
increasing ILP from one to four. We colocate two kernel in-
stances, each with 132 thread blocks and 128 threads per
block, ensuring one warp per kernel on each SMSP. Table
4 shows that when the aggregated FP64 pipeline utilization
remains below 100% (𝑆1 and 𝑆2), colocation achieves a nearly
2× speedup. However, the speedup decreases significantly
as utilization exceeds 100% (𝑆3 and 𝑆4), despite IPC not be-
ing a bottleneck. Each kernel’s achieved occupancy is 6.25%

𝑆1 𝑆2 𝑆3 𝑆4

IPC compute [instr/cycle/SM] 0.51 1.02 1.53 2.01
FP64 Pipe Utilization [%] 24.96 49.32 72.99 96.59
Speedup [seq/col] 1.988 1.977 1.356 1.018

Table 4: Pipeline Interference. Speedup of colocating
two FP64 compute kernels over running them sequen-
tially on H100. IPC and FP64 Pipe Utilization corre-
spond to profiling compute in isolation.

in all scenarios. This shows why the metric alone is insuf-
ficient for colocation decisions, as it fails to capture how
effectively even small warp counts can saturate specific GPU
components, as shown in §3 with the Usher example.

4.3 Example with real ML kernel
In §4.1 and §4.2, we used microbenchmarks to stress specific
GPU resources and demonstrate interference at different
levels. We now show that we can apply our methodology to
any CUDA kernel, including kernels from real ML workloads.
We analyze the torch.mm function, a widely-used Py-

Torch operator for matrix-matrix multiplication in ML work-
loads [39]. This operator invokes a cuBLAS GEMM kernel,
whose grid and block size depend on the input tensors’ di-
mensions, and its code is closed-source.
Using input tensors of 4 MB each, results in the kernel

being launched with 128 blocks and 128 threads/block. We
verified in NCU that the launch configuration as well as
shared memory/register usage allow blocks from two kernel
instances to run concurrently. NCU profiling shows an IPC
of 3.0 and 60% FMA pipeline utilization per kernel, thus
we anticipate intra-SM interference due to high IPC and
pipeline utilization. Indeed, when the kernels are colocated,
each kernel’s latency increases by 1.7×.

5 RESEARCH OUTLOOK
Towards an interference-aware GPU scheduler: Our
methodology for identifyingmulti-dimensional GPU resource
contention can be applied to implement an interference-
aware GPU scheduler that overcomes the pitfalls of related
work and provides strict performance guarantees. The first
step is to develop a kernel-level interference estimator to pre-
dict the performance of kernels under colocation. For each
workload, the estimator can collect each kernel’s metrics and
resource sensitivity as outlined in §4. The estimator can then
predict each kernel’s slowdown due to interference at each
resource. Existing interference estimators only take a subset
of interference sources into account [49, 56]. Themis [55]
and GPUPool [44] consider many of the resources outlined
in §4, but treat them as a black-box input to an ML model,
and present their analysis and evaluation only in simulation.

5



Instead, we demonstrated interference caused by contention
for these resources on high-end NVIDIA GPUs.
The kernel-level estimator provides a foundation for im-

plementing a workload-level interference estimator that can
predict a job’s interference sensitivity. The ultimate goal is a
GPU scheduler that colocates jobs based on the workload in-
terference estimator. The scheduler should take into account
factors such as RPS, SLOs, and queueing delays to come up
with optimal colocation policies that satisfy user objectives.

Hardwarewishlist forGPU spatial sharing:The closed-
source nature of NVIDIA GPUs limits user control over ker-
nel execution as various hardware mechanisms are a black
box. Exposing some hardware features can help program-
mers take better control of the GPU. Better intra-SM visibility
is needed, providing insights into the warp scheduling al-
gorithm and the mapping of instructions to physical cores.
Additionally, a programmer-friendly way to partition SMs
and DRAM channels at the kernel level canmitigate intra-SM
and DRAM bandwidth interference. While MPS allows limit-
ing applications to a set of SMs, it is quite inelastic due to its
coarse granularity (whole workload) [17]. Related work pro-
poses limiting a kernel’s blocks to specific SMs and DRAM
channels (or alter the grid size), but they are code-intrusive
and unsuitable for ML workloads with closed-source ker-
nels [4, 11, 53, 58]. Finally, enabling kernel preemptibility
could improve kernel colocation, especially in real-time tasks,
as shown by REEF [9] for AMD GPUs.

6 CONCLUSION
We highlight common pitfalls of state-of-the-art GPU sched-
ulers and propose a methodology for characterizing utiliza-
tion across heterogeneous GPU components and analyzing
interference. Based on these insights, we outline a research
agenda and hardware requirements for achieving spatial
GPU sharing with strict performance guarantees.

REFERENCES
[1] AMD. Amd gpu hardware basics. https://www.olcf.ornl.gov/wp-

content/uploads/2019/10/ORNL_Application_Readiness_Workshop-
AMD_GPU_Basics.pdf, 2019.

[2] AMD. Omniperf documentation. https://rocm.docs.amd.com/projects/
omniperf/en/docs-6.2.0/, 2024.

[3] Vivek M. Bhasi, Aakash Sharma, Rishabh Jain, Jashwant Raj Gu-
nasekaran, Ashutosh Pattnaik, Mahmut Taylan Kandemir, and Chita
Das. Towards slo-compliant and cost-effective serverless computing
on emerging gpu architectures. In Proceedings of the 25th International
Middleware Conference, Middleware ’24, page 211–224, New York, NY,
USA, 2024. Association for Computing Machinery.

[4] Binghao Chen, Han Zhao, Weihao Cui, Yifu He, Shulai Zhang, Quan
Chen, Zijun Li, and Minyi Guo. Maximizing the utilization of gpus
used by cloud gaming through adaptive co-location with combo. In
Proceedings of the 2023 ACM Symposium on Cloud Computing, SoCC ’23,
page 265–280, New York, NY, USA, 2023. Association for Computing
Machinery.

[5] Christina Delimitrou and Christos Kozyrakis. iBench: Quantifying
Interference for Datacenter Workloads. In Proceedings of the 2013
IEEE International Symposium on Workload Characterization (IISWC),
September 2013.

[6] Yanjie Gao, Yichen He, Xinze Li, Bo Zhao, Haoxiang Lin, Yoyo Liang,
Jing Zhong, Hongyu Zhang, Jingzhou Wang, Yonghua Zeng, Keli Gui,
Jie Tong, and Mao Yang. An empirical study on low gpu utilization of
deep learning jobs. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE ’24, New York, NY, USA,
2024. Association for Computing Machinery.

[7] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramo-
han A. Thekkath, and Ana Klimovic. Cachew: Machine learning input
data processing as a service. In 2022 USENIX Annual Technical Con-
ference (USENIX ATC 22), pages 689–706, Carlsbad, CA, July 2022.
USENIX Association.

[8] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. Serving DNNs like clock-
work: Performance predictability from the bottom up. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 443–462. USENIX Association, November 2020.

[9] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen.
Microsecond-scale preemption for concurrent GPU-accelerated DNN
inferences. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 539–558, Carlsbad, CA, July 2022.
USENIX Association.

[10] Yiyuan He, Minxian Xu, Jingfeng Wu, Wanyi Zheng, Kejiang Ye, and
Chengzhong Xu. Uellm: A unified and efficient approach for llm
inference serving, 2024.

[11] Saksham Jain, Iljoo Baek, Shige Wang, and Ragunathan Rajkumar.
Fractional gpus: Software-based compute and memory bandwidth
reservation for gpus. In 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 29–41, 2019.

[12] Aditya K Kamath, Ramya Prabhu, Jayashree Mohan, Simon Peter,
Ramachandran Ramjee, and Ashish Panwar. Pod-attention: Unlocking
full prefill-decode overlap for faster llm inference, 2024.

[13] Sejin Kim and Yoonhee Kim. K-scheduler: dynamic intra-smmultitask-
ing management with execution profiles on gpus. Cluster Computing,
25(1):597–617, feb 2022.

[14] Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon, and
Myeongjae Jeon. Zico: Efficient GPU memory sharing for concurrent
DNN training. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 161–175. USENIX Association, July 2021.

[15] Kelvin K. W. Ng, Henri Maxime Demoulin, and Vincent Liu. Paella:
Low-latency model serving with software-defined gpu scheduling. In
Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP ’23, page 595–610, New York, NY, USA, 2023. Association for
Computing Machinery.

[16] NVIDIA. Gpu pro tip: Cuda 7 streams simplify concurrency.
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-
simplify-concurrency/, 2015.

[17] NVIDIA. Nvidia multi-process service. https://docs.nvidia.com/
deploy/mps/index.html, 2015.

[18] NVIDIA. Question about sp and sm. https://forums.developer.nvidia.
com/t/questions-about-sp-and-sm/76700/6, 2019.

[19] NVIDIA. Nvidia geforce rtx3090. https://www.nvidia.com/content/
PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf,
2021.

[20] NVIDIA. Cuda c++ programming guide. https://docs.nvidia.com/
cuda/cuda-c-programming-guide/, 2024.

[21] NVIDIA. Cuda, nanosleep function. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/#nanosleep-function, 2024.

[22] NVIDIA. Cuda shared memory configuration. https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html#shared-memory-7-x,6

https://www.olcf.ornl.gov/wp-content/uploads/2019/10/ORNL_Application_Readiness_Workshop-AMD_GPU_Basics.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2019/10/ORNL_Application_Readiness_Workshop-AMD_GPU_Basics.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2019/10/ORNL_Application_Readiness_Workshop-AMD_GPU_Basics.pdf
https://rocm.docs.amd.com/projects/omniperf/en/docs-6.2.0/
https://rocm.docs.amd.com/projects/omniperf/en/docs-6.2.0/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/ 
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/ 
https://docs.nvidia.com/deploy/mps/index.html 
https://docs.nvidia.com/deploy/mps/index.html 
https://forums.developer.nvidia.com/t/questions-about-sp-and-sm/76700/6
https://forums.developer.nvidia.com/t/questions-about-sp-and-sm/76700/6
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#nanosleep-function
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#nanosleep-function
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory-7-x
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory-7-x


2024.
[23] NVIDIA. Is there a document about in which hardware unit(ie. alu

fmu. . . ) an instruction is executed? https://forums.developer.nvidia.
com/t/is-there-a-document-about-in-which-hardware-unit-ie-alu-
fmu-an-instruction-is-executed/227475, 2024.

[24] NVIDIA. Mapping of pipelines to functional units.
https://forums.developer.nvidia.com/t/mapping-of-pipelines-
to-functional-units/315200, 2024.

[25] NVIDIA. Nsight compute. https://developer.nvidia.com/nsight-
compute, 2024.

[26] NVIDIA. Nvidia double precision intrinsics. https:
//docs.nvidia.com/cuda/cuda-math-api/cuda_math_api/group_
_CUDA__MATH__INTRINSIC__DOUBLE.html, 2024.

[27] NVIDIA. Nvidia h100 nvl gpu. https://www.nvidia.com/content/dam/
en-zz/Solutions/Data-Center/h100/PB-11773-001_v01.pdf, 2024.

[28] NVIDIA. Nvidia management library (nvml). https://developer.nvidia.
com/management-library-nvml, 2024.

[29] NVIDIA. Nvidia single precision intrinsics. https://docs.nvidia.
com/cuda/cuda-math-api/cuda_math_api/group__CUDA__MATH_
_INTRINSIC__SINGLE.html, 2024.

[30] NVIDIA. nvidia-smi. https://docs.nvidia.com/deploy/nvidia-smi/
index.html, 2024.

[31] NVIDIA. Roofline charts. https://docs.nvidia.com/nsight-compute/
ProfilingGuide/index.html#roofline-charts, 2024.

[32] NVIDIA. Separate cuda core pipeline for fp16 and fp32?
https://forums.developer.nvidia.com/t/separate-cuda-core-pipeline-
for-fp16-and-fp32/302018, 2024.

[33] NVIDIA. What does achieved active warps per sm in nsight means
and how to calculate it? https://forums.developer.nvidia.com/t/what-
does-achieved-active-warps-per-sm-in-nsight-means-and-how-to-
calculate-it/128256l, 2024.

[34] NVIDIA. what is ipc(instructions per cycle)? https://forums.developer.
nvidia.com/t/what-is-ipc-instructions-per-cycle/66138, 2024.

[35] NVIDIA. Achieved occupancy. https://docs.nvidia.com/gameworks/
content/developertools/desktop/analysis/report/cudaexperiments/
kernellevel/achievedoccupancy.htm, 2025.

[36] NVIDIA. Nsight compute metrics decoder. https://docs.nvidia.com/
nsight-compute/ProfilingGuide/index.html#metrics-decoder, 2025.

[37] John Ousterhout. Always measure one level deeper. Commun. ACM,
61(7):74–83, June 2018.

[38] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, Brijesh
Warrier, Nithish Mahalingam, and Ricardo Bianchini. Characterizing
power management opportunities for llms in the cloud. In Proceedings
of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, ASPLOS ’24,
page 207–222, New York, NY, USA, 2024. Association for Computing
Machinery.

[39] PyTorch. torch.mm. https://pytorch.org/docs/stable/generated/torch.
mm.html, 2024.

[40] Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam
Michaleas, Michael Jones, William Bergeron, Jeremy Kepner, Devesh
Tiwari, and Vijay Gadepally. From words to watts: Benchmarking the
energy costs of large language model inference. In 2023 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–9, 2023.

[41] Sudipta Saha Shubha, Haiying Shen, and Anand Iyer. USHER: Holistic
interference avoidance for resource optimized ML inference. In 18th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 24), pages 947–964, Santa Clara, CA, July 2024. USENIX
Association.

[42] Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha
Choukse. Dynamollm: Designing llm inference clusters for perfor-
mance and energy efficiency, 2024.

[43] Foteini Strati, Xianzhe Ma, and Ana Klimovic. Orion: Interference-
aware, fine-grained gpu sharing for ml applications. In Proceedings of
the Nineteenth European Conference on Computer Systems, EuroSys ’24,
page 1075–1092, New York, NY, USA, 2024. Association for Computing
Machinery.

[44] Xiaodan Serina Tan, Pavel Golikov, Nandita Vijaykumar, and Gennady
Pekhimenko. Gpupool: A holistic approach to fine-grained gpu sharing
in the cloud. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, PACT ’22, page 317–332,
New York, NY, USA, 2023. Association for Computing Machinery.

[45] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. MLaaS in the
wild: Workload analysis and scheduling in Large-Scale heterogeneous
GPU clusters. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 945–960, Renton, WA, April 2022.
USENIX Association.

[46] BingyangWu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. Trans-
parent GPU sharing in container clouds for deep learning workloads.
In 20th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), pages 69–85, Boston, MA, April 2023. USENIX
Association.

[47] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou. Gandiva:
Introspective cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), pages 595–610, Carlsbad, CA, October 2018. USENIX Association.

[48] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi
Li, Yihui Feng, Wei Lin, and Yangqing Jia. AntMan: Dynamic scaling
on GPU clusters for deep learning. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 533–
548. USENIX Association, November 2020.

[49] Fei Xu, Jianian Xu, Jiabin Chen, Li Chen, Ruitao Shang, Zhi Zhou,
and F. Liu. igniter: Interference-aware gpu resource provisioning for
predictable dnn inference in the cloud. IEEE Transactions on Parallel
and Distributed Systems, 34:812–827, 2022.

[50] Gingfung Yeung, Damian Borowiec, Adrian Friday, Richard Harper,
and Peter Garraghan. Towards GPU utilization prediction for cloud
deep learning. In 12th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 20). USENIX Association, July 2020.

[51] Gingfung Yeung, Damian Borowiec, Renyu Yang, Adrian Friday,
Richard Harper, and Peter Garraghan. Horus: Interference-aware
and prediction-based scheduling in deep learning systems. IEEE Trans-
actions on Parallel and Distributed Systems, 33(1):88–100, 2022.

[52] Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-grained GPU shar-
ing primitives for deep learning applications. CoRR, abs/1902.04610,
2019.

[53] Yongkang Zhang, Haoxuan Yu, Chenxia Han, Cheng Wang, Baotong
Lu, Yang Li, Xiaowen Chu, and Huaicheng Li. Missile: Fine-grained,
hardware-level gpu resource isolation for multi-tenant dnn inference,
2024.

[54] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora,
and Xin Jin. Is network the bottleneck of distributed training? In
Proceedings of the Workshop on Network Meets AI & ML, NetAI ’20,
page 8–13, New York, NY, USA, 2020. Association for Computing
Machinery.

[55] Wenyi Zhao, Quan Chen, Hao Lin, Jianfeng Zhang, Jingwen Leng,
Chao Li, Wenli Zheng, Li Li, and Minyi Guo. Themis: Predicting and
reining in application-level slowdown on spatial multitasking gpus. In
2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 653–663, 2019.

7

https://forums.developer.nvidia.com/t/is-there-a-document-about-in-which-hardware-unit-ie-alu-fmu-an-instruction-is-executed/227475
https://forums.developer.nvidia.com/t/is-there-a-document-about-in-which-hardware-unit-ie-alu-fmu-an-instruction-is-executed/227475
https://forums.developer.nvidia.com/t/is-there-a-document-about-in-which-hardware-unit-ie-alu-fmu-an-instruction-is-executed/227475
https://forums.developer.nvidia.com/t/mapping-of-pipelines-to-functional-units/315200
https://forums.developer.nvidia.com/t/mapping-of-pipelines-to-functional-units/315200
https://developer.nvidia.com/nsight-compute 
https://developer.nvidia.com/nsight-compute 
https://docs.nvidia.com/cuda/cuda-math-api/cuda_math_api/group__CUDA__MATH__INTRINSIC__DOUBLE.html
https://docs.nvidia.com/cuda/cuda-math-api/cuda_math_api/group__CUDA__MATH__INTRINSIC__DOUBLE.html
https://docs.nvidia.com/cuda/cuda-math-api/cuda_math_api/group__CUDA__MATH__INTRINSIC__DOUBLE.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/h100/PB-11773-001_v01.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/h100/PB-11773-001_v01.pdf
https://developer.nvidia.com/management-library-nvml
https://developer.nvidia.com/management-library-nvml
https://docs.nvidia.com/cuda/cuda-math-api/cuda_math_api/group__CUDA__MATH__INTRINSIC__SINGLE.html
https://docs.nvidia.com/cuda/cuda-math-api/cuda_math_api/group__CUDA__MATH__INTRINSIC__SINGLE.html
https://docs.nvidia.com/cuda/cuda-math-api/cuda_math_api/group__CUDA__MATH__INTRINSIC__SINGLE.html
https://docs.nvidia.com/deploy/nvidia-smi/index.html 
https://docs.nvidia.com/deploy/nvidia-smi/index.html 
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#roofline-charts
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#roofline-charts
https://forums.developer.nvidia.com/t/separate-cuda-core-pipeline-for-fp16-and-fp32/302018
https://forums.developer.nvidia.com/t/separate-cuda-core-pipeline-for-fp16-and-fp32/302018
https://forums.developer.nvidia.com/t/what-does-achieved-active-warps-per-sm-in-nsight-means-and-how-to-calculate-it/128256l
https://forums.developer.nvidia.com/t/what-does-achieved-active-warps-per-sm-in-nsight-means-and-how-to-calculate-it/128256l
https://forums.developer.nvidia.com/t/what-does-achieved-active-warps-per-sm-in-nsight-means-and-how-to-calculate-it/128256l
https://forums.developer.nvidia.com/t/what-is-ipc-instructions-per-cycle/66138
https://forums.developer.nvidia.com/t/what-is-ipc-instructions-per-cycle/66138
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm 
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm 
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm 
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-decoder 
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-decoder 
https://pytorch.org/docs/stable/generated/torch.mm.html
https://pytorch.org/docs/stable/generated/torch.mm.html


[56] Xia Zhao, Magnus Jahre, and Lieven Eeckhout. Hsm: A hybrid slow-
down model for multitasking gpus. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, page 1371–1385, New
York, NY, USA, 2020. Association for Computing Machinery.

[57] Yihao Zhao, Xin Liu, Shufan Liu, Xiang Li, Yibo Zhu, Gang Huang,
Xuanzhe Liu, and Xin Jin. Muxflow: Efficient and safe gpu sharing in
large-scale production deep learning clusters, 2023.

[58] Zhihe Zhao, Neiwen Ling, Nan Guan, and Guoliang Xing. Miriam:
Exploiting elastic kernels for real-time multi-dnn inference on edge

gpu. In Proceedings of the 21st ACMConference on Embedded Networked
Sensor Systems, SenSys ’23, page 97–110, New York, NY, USA, 2024.
Association for Computing Machinery.

[59] Kan Zhu, Yilong Zhao, Liangyu Zhao, Gefei Zuo, Yile Gu, Dedong Xie,
Yufei Gao, Qinyu Xu, Tian Tang, Zihao Ye, Keisuke Kamahori, Chien-
Yu Lin, Stephanie Wang, Arvind Krishnamurthy, and Baris Kasikci.
Nanoflow: Towards optimal large language model serving throughput,
2024.

8


	Abstract
	1 Introduction
	2 Background
	2.1 GPU hardware overview
	2.2 Utilization metrics

	3 Pitfalls of GPU schedulers
	4 GPU interference analysis
	4.1 Inter-SM interference
	4.2 Intra-SM interference
	4.3 Example with real ML kernel

	5 Research Outlook
	6 Conclusion
	References

