
Sailor: Automating Distributed Training over Dynamic,
Heterogeneous, and Geo-distributed Clusters

Foteini Strati∗
ETH Zurich
Switzerland

Zhendong Zhang
ETH Zurich
Switzerland

George Manos
ETH Zurich
Switzerland

Ixeia Sánchez
Périz†

Qinghao Hu
MIT
USA

Tiancheng Chen
ETH Zurich
Switzerland

Berk Buzcu
HES-SO

Switzerland

Song Han
MIT
USA

Pamela Delgado
HES-SO

Switzerland

Ana Klimovic
ETH Zurich
Switzerland

Abstract
The high GPU demand of ML training makes it hard to al-
locate large homogeneous clusters of high-end GPUs in a
single availability zone. Leveraging heterogeneous GPUs
available within and across zones can improve throughput at
a reasonable cost. However, training ML models on hetero-
geneous resources introduces significant challenges, such as
stragglers and a large search space of possible job configura-
tions. Current systems lack support for efficiently training
models on heterogeneous resources. We present Sailor, a sys-
tem that automates distributed training over heterogeneous,
geo-distributed, and dynamically available resources. Sailor
combines an efficient search space exploration algorithm,
accurate runtime and memory footprint simulation, and a
distributed training framework that supports different types
of heterogeneity to optimize training throughput and cost.

CCS Concepts: • Computing methodologies→Machine
learning.

Keywords: Distributed Training
ACM Reference Format:
Foteini Strati, Zhendong Zhang, George Manos, Ixeia Sánchez Périz,
Qinghao Hu, Tiancheng Chen, Berk Buzcu, Song Han, Pamela Del-
gado, and Ana Klimovic. 2025. Sailor: Automating Distributed Train-
ing over Dynamic, Heterogeneous, and Geo-distributed Clusters.
In ACM SIGOPS 31st Symposium on Operating Systems Principles
(SOSP ’25), October 13–16, 2025, Seoul, Republic of Korea. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3731569.3764839

1 Introduction
GPUs are in high demand for large-scale Machine Learn-
ing (ML). As ML models continue to grow exponentially in
∗Correspondence to foteini.strati@inf.ethz.ch
†Work done while at ETH Zurich

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1870-0/2025/10.
https://doi.org/10.1145/3731569.3764839

Figure 1. When homogeneous resources are limited, using
heterogeneous GPUs (A100, V100) or multiple zones can
increase OPT-350M training throughput (c3-c4) at low cost
(black line). However, when the resource topology and job
parallelization are not well selected, iteration time and mon-
etary cost may increase significantly (c5-c6).

size, they require an increasing number of GPUs to train
and fine-tune. This high demand makes it difficult for model
developers to allocate the desired number of accelerators
to train models at high throughput in public clouds or en-
terprise clusters [56, 62, 73]. Datacenters typically host a
variety of GPU types and generations, spread across geo-
graphic regions [10, 22, 23, 66, 70]. Yet model developers
tend to restrict model training to homogeneous clusters of
GPUs, since state-of-the-art distributed training frameworks
like Megatron-LM [54] and DeepSpeed [12] assume homo-
geneous GPUs and inter-node bandwidth. The demand for
large, homogeneous GPU clusters compounds the scarcity
of high-end GPUs.
Allowing a training job to run on heterogeneous GPU

types and/or GPUs distributed across zones (i.e., with hetero-
geneous inter-node bandwidth) can give model developers
access to more GPUs per job to increase training through-
put. For example, consider a model developer who seeks to
maximize training throughput by using 32 A100 GPUs (c2
in Figure 1), but discovers that only 16 A100s (c0 in Figure 1)
are currently available in one zone. Using heterogeneous
GPU generations (e.g., c3 uses an additional 16 V100s in the
zone) or multi-zone configurations (e.g., c4 uses 32 A100s
spread across 2 zones within a region) increases throughput
by 1.15× and 1.87×, respectively, with a moderate increase
in monetary cost per iteration (black line).

https://doi.org/10.1145/3731569.3764839
foteini.strati@inf.ethz.ch
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3731569.3764839

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Strati, et al.

However, supporting heterogeneous, geo-distributed re-
sources introduces several challenges. First, heterogeneous
GPU types and placements across zones exponentially ex-
pand the configuration search space. Searching for an opti-
mal configuration requires jointly optimizing the resource al-
location and job parallelization plan (e.g., data/pipeline/tensor
parallelism degrees). For example, in Figure 1, although c5
uses the same number of GPUs as c3, it achieves much lower
throughput due to a suboptimal parallelization plan. The
search must also consider the cost caused by extra resources
and data transfers. Cloud providers charge significant fees
for inter-zone and inter-region data transfers [4, 5, 11], which
impacts geo-distributed configurations. In Figure 1, c6 uses
the same number of GPUs and parallelization strategy as c4,
but spreads training across regions (instead of zones within
the same region), which increases cost.

Furthermore, as resource availability changes dynamically
in datacenters, due to variable demand and node failures or
preemptions, it is necessary to navigate this vast search space
quickly [60, 63]. Figure 2 shows the varying number of A100
GPUs that wewere able to allocate over an 8-hour period, out
of the 8 A100s that we continuously requested in 2 different
zones in Google Cloud. Such changes in resource availability
require frequently re-evaluating the job configuration search
space. Thus, model developers require a system to quickly
navigate the large search space of heterogeneous (and homo-
geneous) configurations with dynamic resource availability,
optimizing for the user’s performance-cost objective, while
satisfying constraints (e.g., budget limits).
Second, profiling many candidate configurations to eval-

uate their throughput is prohibitively expensive and time-
consuming. Hence, it is critical to accurately estimate the
iteration time of a candidate configuration. This is challeng-
ing in heterogeneous environments, as differences in peak
FLOPS, memory capacity, CPU-GPU interconnects, number
of GPUs per node, and inter-node bandwidth typically lead
to stragglers, which can significantly limit throughput. More
importantly, variability in memory capacity per GPU may
cause out-of-memory (OOM) errors in some GPUs, disrupt-
ing the entire training job. Simulating iteration time and
checking that job configurations are valid (i.e., will not cause
OOM) requires correctly modeling stragglers and per-GPU
memory footprints.
Finally, after finding an appropriate resource allocation

and parallelization plan for a training job given the avail-
able resources, model developers need to be able to run this
job configuration in a distributed training framework (such
as Megatron [54]). We find that optimal configurations for
jobs running on heterogeneous resource topologies often
include heterogeneous parallelism degrees per stage to load-
balance the compute and memory capacity of different GPU
types. Today’s state-of-the-art distributed training frame-
works need to be adapted to support such heterogeneous
job configurations. Furthermore, as resource availability can

change frequently (e.g., when using spot instances [60]), the
training framework must be able to quickly reconfigure jobs.

Existing systems do not adequately solve these challenges.
First, current works do not co-optimize the resource alloca-
tion with the job parallelization plan. Instead, systems like
Aceso [31], Galvatron [37], and others in Table 1 expect the
user to select a fixed resource allocation for which the sys-
tem recommends a job parallelization plan. Most systems
also do not consider heterogeneous resource topologies. Re-
cent systems like Atlas [41], DTFM [74], Metis [62], and
FlashFlex [72] optimize parallelization for heterogeneous
GPUs or geo-distributed setups, but they suffer from pro-
hibitively long search times (up to hours for configurations
with 10s of GPUs) [62], or suboptimal cost functions [72, 74],
making them unsuitable for environments with dynamic
resource availability. Second, existing systems rely on inac-
curate simulators to estimate the training throughput and
memory footprint of candidate configurations. For exam-
ple, Varuna [3] overlooks significant memory sources (e.g.,
memory needed by the optimizer, communication, etc) when
estimating memory footprint, hence recommending config-
urations that lead to OOM errors. Finally, state-of-the-art
distributed training frameworks like Megatron-LM [54] are
slow to reconfigure jobs and do not support heterogeneous
job parallelization plans or different microbatch sizes per
GPU, which is necessary to maximize throughput and mini-
mize cost in heterogeneous clusters.

To this end, we propose Sailor, a system for efficient large-
scale training over heterogeneous resources with dynamic
availability. Sailor1 consists of three components: a con-
figuration planner, a simulator, and a distributed training
framework. The Sailor planner navigates the search space
of resource allocations and job parallelization plan combi-
nations. It recommends configurations that optimize a user-
defined objective (e.g., max throughput or min cost) under
constraints (e.g., max budget or min throughput). The plan-
ner considers heterogeneous GPU and machine types and
geo-distributed setups. The planner uses the simulator to
accurately model iteration time and memory footprint for
any given configuration. Through a combination of dynamic
programming and search space pruning with effective heuris-
tics, the planner finds solutions within seconds even for
allocations with 100s of GPUs and varying degrees of hetero-
geneity. This allows Sailor to quickly adapt plans based on
resource availability. Finally, the Sailor training framework
adds support for heterogeneous configurations to execute
the planner’s configurations. It also adds support for fault
tolerance and elasticity, enabling adaptation to changes in re-
source availability. Together, these components enable Sailor
to efficiently automate large-scale training in homogeneous,
heterogeneous, and/or dynamic resource environments.

1Sailor is available at https://github.com/eth-easl/sailor

https://github.com/eth-easl/sailor

Sailor: Automating Distributed Training over Dynamic,
Heterogeneous, and Geo-distributed Clusters SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

System Support Search Time (128 A100)
Piper [59] 3D, X, X, X <1 sec
AMP [27] 3D, X,✓, X 14 sec
Varuna [3] 3D, X, X, X < 1 sec
Oobleck [21] 3D, X, X, X hours
Metis [62] 3D, X,✓, X hours
FlashFlex [72] 3D,✓,✓, X 3 sec
Galvatron [37] 3D, X, X, X 10s of sec
Aceso [31] 3D, X, X, X 200 sec
DTFM [74] 2D,✓, X,✓ 125 sec
Atlas [41] 3D,✓, X,✓ 100 sec
Sailor 3D,✓,✓,✓ < 1 sec

Table 1. Overview of distributed ML training planners. We
omit planners that change ML training semantics [65]. The
Support column stands for: [degrees of parallelism supported,
recommends resource allocation, supports heterogeneous GPU
types, supports multi-zone]. Search time assumes a cluster of
128 A100 GPUs and OPT-350M model.

We evaluate Sailor in various setups and compare it exten-
sively to prior works. To the best of our knowledge, our work
is the first to compare the major open-source ML training
planners proposed to-date (Table 1) in homogeneous and
heterogeneous scenarios. We show that Sailor can find re-
source allocations and job parallelization plans that result in
higher throughput than baselines in both homogeneous and
heterogeneous clusters. We show how Sailor can leverage
heterogeneous resources to improve throughput by 1.1-2.87×
compared to the heterogeneity-aware baselines (Metis, Flash-
Flex, AMP), while maintaining search times of 10s of seconds
compared to minutes or hours needed by the baselines. We
also show Sailor’s ability to increase performance and reduce
cost in geo-distributed setups compared to DTFM by 5.9×
and 9.8×, respectively. Finally, we demonstrate Sailor’s abil-
ity to minimize monetary cost given throughput constraints,
resulting in 40% cost savings compared to the second-best-
performing baseline.

2 Background
2.1 ML job parallelization strategies
Million or billion-parameter ML models train on massive
datasets on clusters of high-end accelerators such as GPUs,
using a combination of parallelization strategies:
Data Parallelism (DP): The model is replicated across

workers, while the dataset is partitioned. At the end of each
iteration, the workers synchronize their gradients using an
all-reduce collective [50].

Pipeline Parallelism (PP): The model is split into stages,
with each stage consisting of a set of layers, and assigned
to a worker or node. Workers operate at the granularity of
a microbatch2, performing forward and backward passes,
sending activations to the next stage, and gradients to the
previous stage. Due to inter-stage dependencies, pipeline

2A minibatch is split in microbatches.

Figure 2. Availability of A100 GPUs in two zones in Google
Cloud over 8-hr period. We request 8 GPUs in each zone.
The trace was collected in April 2024.

parallelism is subject to bubbles, i.e., periods that a stage
remains idle, waiting for others to complete [18]. As a result,
many approaches have been proposed to process multiple
microbatches simultaneously and reduce bubbles [3, 40].

Tensor Parallelism (TP):With tensor parallelism, a layer
is divided across GPUs. After each GPU performs its local
computations (both in forward and backward pass), the GPUs
are synchronized using collectives such as all-reduce and
all-gather. Since TP requires frequent communication, it re-
quires very high interconnection bandwidths and is usually
limited within a single node for reasonable throughput [54].

2.2 Automating parallelization strategies
Determining the optimal degree of parallelism for each di-
mension (DP, PP, TP) is complex and greatly affects training
throughput. Multiple systems, which we refer to as planners,
automate this process (see Table 1). Given a fixed resource
allocation (e.g., 16 nodes with 4 A100 GPUs each), model con-
figuration (including hyperparameters like global batch size
and learning rate), model profiling information (e.g., time
for forward and backward pass for different configurations),
and hardware characteristics (e.g., network bandwidth), plan-
ners explore different parallelization strategies, estimating
the training time under different configurations, using some
form of simulation. Planners apply techniques such as ex-
haustive search [3, 62], dynamic programming [27, 59], and
integer linear programming [78] to identify configurations
that minimize training time.

3 Motivation and Challenges
3.1 Why use heterogeneous, geo-distributed GPUs?
Homogeneous high-end GPU clusters are scarce. The
widespread adoption of ML, and hardware vendors’ inabil-
ity to keep up with this pace, has significantly increased
GPU demand. Several studies report limited GPU availability
across public cloud providers [8, 9, 56, 60, 73]. For example,
Figure 2 plots the availability of on-demand A100 GPUs in
two zones in GCP. In one zone, it took 7 hours to allocate 8
A100 GPUs, while in the other zone, the requested number
of GPUs was not attained within the 8-hour window. Our
findings align with the AWS GPU availability plot from Guo
et al. [16], which shows that high-end GPUs such as A100
and H100 are difficult to aquire, while mid-tier GPUs (A10G,

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Strati, et al.

V100, T4) have higher but still limited and dynamic avail-
ability. Using GPUs across zones with heterogeneous types
gives ML jobs the opportunity to use more GPUs to further
increase throughput, as shown in Figure 1.

Power and cooling limits #GPUs per datacenter. From
2020 to 2025, the size of state-of-the-art ML models has in-
creased by roughly 1200× [35, 67, 68], while per-GPU mem-
ory capacity has only increased by 8× [69]. This requires
hyperscalers to deploy more and more GPUs [17, 61]. How-
ever, the high power and cooling requirements of high-end
GPUs limits the amount that can be deployed per datacen-
ter [55]. The next generation of MLmodels may need to train
on GPUs across multiple availability zones [6, 30, 42, 52].
Using old GPUs can reduce embodied carbon. Em-

bodied carbon (greenhouse gas emissions associated with
manufacturing to disposal) is a major source of datacenter
emissions [1, 48, 64]. Although users prefer to allocate the
latest GPUs for their ML jobs, older GPUs are abundant as the
typical lifetime for ML servers in hyperscaler datacenters is
∼6 years [51, 64]. Finding optimal ways to spread jobs across
heterogeneous GPUs will enable leveraging older GPUs for
longer to better amortize embodied carbon.

3.2 Challenges with Heterogeneous ML Clusters
C1: Quickly searching a vast configuration space. Con-
sidering heterogeneous and geo-distributed GPUs creates a
vast and complex search space. The ML developer needs to
decide howmany GPUs to use and how to group them across
VMs. This complexity increases further, when accounting
for job parallelization plans within each allocation. Further-
more, the optimal allocation and partitioning strategies de-
pend on user objectives and constraints. A planner needs
to quickly navigate the large configuration space to adapt
to dynamic resource availability in cloud and on-premise
environments [15, 16, 60, 66], since maximizing throughput
requires adapting parallelization strategies with changes to
cluster topology [3, 63].

Table 1 shows that Metis [62], FlashFlex [72], Cephalo [16],
Atlas [41], and DTFM [74] explore parts of this large search
space. Atlas [41] and DTFM [74] target geo-distributed train-
ing, but do not consider heterogeneous GPU types, and do
not decide the various parallelism degrees: instead, they take
as input the parallelism degrees, and assign these degrees
in the available zones. On the other hand, Metis [62], Flash-
Flex [72] and Cephalo [16], consider heterogeneous GPU
types, but overlook geo-distributed training, and are quite
inefficient for dynamic environments. Metis needs a few
hours to devise a plan for a 16-GPU cluster (A100 and V100)3,
making frequent reevaluation infeasible as GPU availability

3with max_permutation_length and device group variance set to 10 and 0.5
respectively, according to the paper [62]

Figure 3. Peak Memory estimations of various baselines
compared to the actual peak memory, for the OPT-350M
model on a homogeneous cluster of 4 Grace-Hopper per
node. 𝑁 stands for the number of nodes, 𝑔𝑏𝑠 is the global
batch size, 𝑝𝑝 pipeline parallelism, 𝑡𝑝 tensor parallelism, 𝑑𝑝
data parallelism, and𝑚𝑏𝑠 the microbatch size.

changes. Cephalo [16] has a search time of 300 sec on a clus-
ter of 64 GPUs4, but it is limited only to Fully Sharded Data
Parallelism. FlashFlex [72] has a short runtime, but provides
inaccurate runtime estimations, leading to suboptimal plans.
Furthermore, these planners only optimize for throughput,
ignoring budget constraints, and cost (dollars per iteration),
which affect the optimal configuration (§5.2.4).

C2: Accurately simulating memory footprint and
iteration time. Most planners use analytical models or sim-
ulations to evaluate a configuration (parallelism degrees,
microbatch sizes, etc) on a given cluster setup, since it is
impractical and very expensive to deploy and profile every
configuration. This evaluation usually includes two stages:
1) memory footprint estimation, to identify whether a con-
figuration is valid (i.e., it does not lead to OOM errors) and
2) iteration time estimation, to determine performance.

Unfortunately, these estimations are often inaccurate, re-
sulting in suboptimal or invalid plans. First, planners either
completely ignore memory footprint [27], or underestimate
the amount of memory requirements during training [3, 21],
omitting activations, optimizer states, and memory fragmen-
tation, or assume the training memory footprint is uniform
across all devices and pipeline stages [29, 72]. As a result,
these systems may find plans that cause OOM errors, when
deployed. Figure 3 compares memory footprint estimations
with the real footprint on a homogeneous cluster of up to
16 Grace-Hopper nodes for the OPT-350M model, showing
that planners can be 25-95% off when estimating memory
footprint. Second, planners often poorly model training time,
due to incorrect assumptions about network bandwidth and
ignoring communication-computation overlap [12, 76].
Modeling memory footprint and iteration time becomes

even more complex with heterogeneity [38]. Different GPU
generations vary in compute performance (e.g., TFLOPs), and
memory capacity [79]. Thus, a configuration that fits in one
GPU, might cause OOM errors in another GPU. Additionally,
stragglers and network bandwidth differences (especially in
geo-distributed setups [56]) must be considered for accurate
timing estimations. Plannersmust accuratelymodel compute,
4reported on the paper [16]

Sailor: Automating Distributed Training over Dynamic,
Heterogeneous, and Geo-distributed Clusters SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

memory, and network bandwidth heterogeneity - yet, as
shown in Table 1, most systems overlook this.

C3: Supporting both heterogeneous plans and seam-
less elasticity in a real distributed training framework.
Most training frameworks, i.e., systems that train a model on
a set of devices, assume homogeneous clusters and job config-
uration plans. For example, widely used and high-performing
frameworks such as Megatron [54] and DeepSpeed [12] as-
sume uniform parallelism degrees for the entire training job
(e.g. DP=2, PP=6, TP=1). This limits efficiency in heteroge-
neous configurations, where various parallelism degrees per
training subproblem (e.g., using PP=6, with first 3 stages
having TP=4, and the next 3 stages having TP=2) help load-
balance compute and memory on GPU nodes with different
resources. Thus, a framework should accommodate hetero-
geneous degrees of parallelism. Furthermore, the framework
should seamlessly reconfigure and adapt to dynamic GPU
availability (Figure 2), as long job reconfiguration times in
response to resource changes are wasteful [60, 63]. Although
related works propose elastic systems [3, 14, 60] or systems
that support heterogeneity [36, 72], there is no open-source
system that supports both.

4 Sailor
To address the above challenges, we propose Sailor, a dis-
tributed training ecosystem that consists of a profiler, plan-
ner, simulator, and distributed training framework. As shown
in Figure 4, ML developers submit their model training spec-
ifications (model, optimizer, global batch size, etc), resource
quotas (the maximum number of GPUs for each type and
zone), an objective (e.g., maximize throughput or minimize
cost), and optionally also constraints (e.g, a maximum bud-
get per iteration or a maximum iteration time). Sailor also
receives feedback about the current availability of hardware
resources (which may be less than the quotas).
Workflow. The Sailor profiler 1 collects information about
the training job, the compute nodes and network bandwidth
(§4.1). The Sailor planner 2 uses this information to select
a near-optimal resource allocation from the pool of available
hardware and a job parallelization plan that optimizes the
user’s objective within the provided constraints (§4.2). The
planner uses the simulator 3 to accurately evaluate vari-
ous candidate plans (§4.3) in terms of throughput, memory
footprint, and cost. Sailor then launches the job with the
selected configuration using its distributed training frame-
work 4 (§4.4), which is implemented on top of Megatron-
DeepSpeed [12]. Sailor dynamically re-configures the job as
resource availability changes.

4.1 Sailor Profiler
Training job profiling:When a user submits a training job,
the Sailor profiler collects information about the job’s com-
pute and memory requirements. Sailor profiles a training job

Figure 4. Sailor system overview.

on a single GPU node for each different GPU node type in
the available resource pool. To minimize profiling time and
enable single-node profiling, the profiler reduces repeated
layers to a single instance (e.g., it uses one transformer layer
for a given LLM). We use PyTorch hooks [44] to collect in-
formation per layer: the time required for the forward pass,
backward pass, and update phase with different microbatch
sizes and tensor parallel degrees. We use CUDA Events for
accurate GPU measurements [43]. We also track the number
of parameters, output activation, and the memory required
for intermediate stages per layer, using the PyTorch CUDA
memory allocator [45]. The profiling overhead is negligible
(a couple of minutes) for the LLMs we consider. For models
with non-uniform layers, all layers need to be profiled, which
increases profiling time. Our profiling approach can be used
with any dense layers, while profiling Mixture-of-Experts
(where layer load may vary dynamically during training) is
left for future work.

Cluster profiling: Sailor also collects information about
the network bandwidth between any pair of different ma-
chine types. Since network bandwidth depends on the mes-
sage size, Sailor collects network bandwidth measurements
(using PyTorch collectives with NCCL backend) by varying
the message size and fitting a polynomial function to get a
set of coefficients for any pair of node types. Our profiling
methodology applies to all GPU types. Adding a new GPU
type requires collecting model and cluster profiling data as
described above.

4.2 Sailor Planner
The Sailor planner takes as input the training job and cluster
profiling information from the profiler, a performance or cost
objective, and optionally a constraint such as a budget. The
planner selects a resource allocation and a parallelization
plan to optimize the objective under the constraints. The
parallelization plan defines the number of pipeline stages
𝑃 (which we refer to simply as stages), the data parallelism
degree of each stage𝐷 , the𝐷 pairs of (𝐺𝑃𝑈 𝑗 ,𝑇𝑃 𝑗 , 𝑍𝑜𝑛𝑒 𝑗) for
each stage, and the microbatch size𝑚𝑏𝑠 . The Sailor planner
does not change the global batch size, thus it does not affect
the job’s training dynamics.

The combination of resource allocation and parallelization
plan candidates creates a vast search space. To find efficient

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Strati, et al.

solutions quickly, Sailor: 1) prunes the search space with
heuristics that consider training memory footprint, GPU
capacity, and scalability constraints (§4.2.1), and 2) applies
dynamic programming to reuse information about the per-
formance of parallelization plans (§4.2.2). These techniques
allow Sailor to find training plans in 10s of seconds even for
large heterogeneous, geo-distributed scenarios (§5.2).

The planner iterates through different parallelism degrees
and microbatch sizes (based on model characteristics and
profiling information). For a given layer partitioning and
microbatch size, it finds the tensor parallelism degree for
each GPU type, based on memory constraints and scaling
heuristics. Then, it iterates through all cloud region combina-
tions and selects the data parallelism degrees to evaluate for
a combination. For a fixed data parallelism degree, the plan-
ner invokes the 𝑠𝑜𝑙𝑣𝑒_𝑑𝑝() function (Listing 1) that applies
dynamic programming to determine the optimal stage con-
figuration (§4.2.2). The planner considers the configuration
valid only when it is within the user-specified constraint.

Finally, the planner sorts the configurations according to
the objective and returns the best configuration.

4.2.1 Pruning the large search space with heuristics.
We introduce heuristics to prune the search, omitting cases
early-on that would lead to suboptimal or invalid results:
H1: Limit tensor parallelism within a node. Tensor paral-

lelism performance is known to degrade when spanning
multiple nodes [54, 58]. We restrict tensor parallelism to
a single node and do not explore cross-node pairs (unlike
Metis [62]). As a result, each tensor parallel replica of a stage
only uses a single GPU type.

H2: Prune OOM configurations early. Since each stage replica
performs tensor parallelism only among GPUs of the same
type, we can easily compute theminimum tensor parallelism
degree of each GPU type, for a given pipeline parallel stage
and microbatch size. We exclude cases with tensor paral-
lelism below this minimum. To find the minimum tensor par-
allelism degree per GPU for a stage, we compute the memory
footprint of that stage as described in §4.3, and identify the
minimum number of GPUs required based on the available
memory per GPU. The minimum tensor parallelism for each
stage is independent of the number of available GPUs per
type, so we can reuse it when resource availability changes.
H3: When maximizing throughput, consider data paral-

lelism degrees in decreasing order, until throughput stops in-
creasing. Sailor uses the same data parallelism for each stage.
We observe that, with a fixed pipeline parallel degree, in-
creasing data parallelism (by using more machines) benefits
training throughput as more pipelines process minibatches
independently. However, as the data parallelism degree in-
creases, the time required for gradient synchronization also
increases, negatively affecting training throughput. Thus,
when optimizing for throughput, we first determine the max-
imum feasible data parallelism degree based on available

resources, and then progressively reduce it, until throughput
stops improving.

H4:Whenminimizing cost, consider data parallelism degrees
in increasing order, until cost per iteration stops decreasing.
Following the logic from H3, for a fixed pipeline, doubling
the data parallelism degree will lead to doubling the number
of resources, but will not half the iteration time (due to all-
reduce scaling overheads). Thus, configurations with a lower
data parallelism degree lead to lower cost/iteration. Thus,
when the user objective is minimizing cost/iteration, we
search for increasing data parallel degrees 𝐷 until a solution
within the throughput constraint is found.

H5: Keep data parallel communication within a single region,
while spreading pipeline parallel communication across more
than one region. As shown by earlier work [41, 56], data
parallelism performs poorly across regions due to the low
network bandwidth. We constraint all data parallel pairs of
a stage within a single region.

H6: Treat multiple zones within the same region as a single
zone.Within a cloud region, the network bandwidth across
zones is similar to the network bandwidth within a zone [56].
Thus, to reduce the search space, we consolidate all zones
in a region into a single zone and do the geo-distributed
partitioning at a region granularity.

4.2.2 Selecting per-stage configurationswith dynamic
programming. We now describe how we find optimal re-
source configuration per stage for a given pipeline and data
parallelism degree, microbatch size, tensor parallel degrees
per stage, and GPU type. The formulation we describe below
assumes an iteration time minimization objective and §4.2.3
describes how we further incorporate cost constraints. For
brevity, we omit the reverse optimization (monetary cost
minimization under throughput constraints).
Problem formulation and goal: Given a pipeline par-

allel degree 𝑃 , a microbatch size𝑚𝑏𝑠 , a data parallel degree
𝐷 , and tensor parallel degrees 𝑡𝑝𝑖 𝑗 for GPU 𝑗 and stage 𝑖 ,
we want to find, for each stage 𝑖 , the 𝐷 replicas, where each
replica is a tuple (𝑗, 𝑡𝑝𝑖 𝑗 , 𝑧𝑜𝑛𝑒𝑘) that minimizes iteration time.
Note that Sailor precomputes 𝑡𝑝𝑖 𝑗 (Heuristic H2).
Why dynamic programming? Optimizing resource al-

location per stage is challenging, as assigning resources to
one stage impacts overall runtime and availability for other
stages. In a heterogeneous, multi-zone setup, the number of
possible resource combinations per stage explodes. Related
works on homogeneous clusters used Integer Linear Pro-
gramming (ILP) [21, 78], exhaustive search [3], or dynamic
programming [27, 59]. We adopt dynamic programming for
its ability to decompose the problem into subproblems and
reuse intermediate results.

Dynamic programming formulation:Assume we have
a pipeline with degree 𝑃 , and we want to solve the dynamic
programming problem for stage 𝑖 that has 𝐿 layers, with
𝑙0 being the first layer. We formulate selecting a resource

Sailor: Automating Distributed Training over Dynamic,
Heterogeneous, and Geo-distributed Clusters SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

configuration per stage as finding 𝑟 resources to give to stage
𝑖 while minimizing the iteration time 𝑇𝑖𝑡𝑒𝑟 as follows:

𝑇𝑖𝑡𝑒𝑟 (︀𝑙0⌋︀(︀𝑃⌋︀(︀𝑅⌋︀ =𝑚𝑖𝑛𝑟{𝑇𝑡𝑜𝑡𝑎𝑙(𝑇𝑖𝑡𝑒𝑟 (︀𝑙0+𝐿⌋︀(︀𝑃−1⌋︀(︀𝑅−𝑟⌋︀,𝑇𝑖(𝑟))}
(1)

for a given pipeline parallel degree 𝑃 , stage 𝑖 , and available
resources 𝑅. We give 𝑟 resources to stage 𝑖 , and 𝑅 − 𝑟 re-
sources are available for the subsequent stages. In Sailor,
𝑟 represents a map of different GPU types and zones, and
should be enough to get 𝐷 replicas of this stage. Based on
heuristicH5, we keep each stage within a single region.𝑇𝑡𝑜𝑡𝑎𝑙
is calculated by identifying the straggler between stage 𝑖 and
the rest pipeline, the pipeline communication cost between
stage 𝑖 and 𝑖+1, and the synchronization bottleneck between
stage 𝑖 and the rest pipeline.
More specifically, assuming 𝑋 − 𝑖 is the pipeline without

stage 𝑖 , and 𝑁𝑏 is the number of microbatches processed per
pipeline, 𝑡 𝑗 is the time per stage, and 𝑠𝑦𝑛𝑐 𝑗 is the time for
synchronization:

𝑇𝑡𝑜𝑡𝑎𝑙 =𝑚𝑎𝑥(𝑡𝑖(𝑟), 𝑆𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟𝑋−𝑖(𝑅 − 𝑟)) ⋅ 𝑁𝑏

+𝑚𝑎𝑥(𝑠𝑦𝑛𝑐𝑖(𝑟), 𝑠𝑦𝑛𝑐𝑋−𝑖(𝑅 − 𝑟)) +
𝑃−1
∑
0
𝑡 𝑗

Our formulation aims to minimize iteration time and re-
duce pipeline stragglers, inherently excluding imbalanced
pipelines with large stage time differences.
Implementation: Listing 1 implements the above for-

mulation for heterogeneous GPUs and various cloud zones
and regions. The procedure starts by generating all resource
combinations of different GPU types that could fit this stage
with the specified data parallelism (line 2). Then, for each
combination 𝑟 , it finds the next available region that fits
stage 𝑖 with 𝑟 resources (lines 6 and 14). If 𝑖 is the last stage,
it returns the configuration that minimizes the stage time.

4.2.3 Adding a monetary cost constraint. So far, we
have formulated the iteration time minimization as a dy-
namic programming problem, and we split the problem at
per-stage subproblems as shown in Eq 1 and Listing 1. When
introducing a budget constraint, we need to account for the
remaining budget per stage, to solve the DP subproblem for
that stage. The monetary cost depends both on the resources
used and the iteration time. However, the iteration time de-
pends on the pipeline straggler, which is not yet known
when solving the resource allocation subproblem for stage 𝑖 .
To overcome this limitation, when solving the subproblem
for stage 𝑖 , we approximate the remaining budget by first
considering that stage 𝑖 is the straggler, and solving for the
remaining stages with the respective remaining budget. At
the end, we determine the actual straggler. If our straggler
assumption was not correct, we adjust the budget with the
new straggler and we solve the subproblems again.

Problem formulation: The monetary cost per iteration
includes the cost due to compute resources 𝐶𝑐𝑜𝑚𝑝 and due

to data transfer 𝐶𝑐𝑜𝑚𝑚 . When introducing a monetary cost
constraint 𝐶 , the cost per iteration should satisfy:

𝐶𝑖𝑡𝑒𝑟 = 𝐶𝑐𝑜𝑚𝑝+𝐶𝑐𝑜𝑚𝑚 <= 𝐶 =>
𝑖=𝑃−1
∑
𝑖=0

𝐶𝑐𝑜𝑚𝑝𝑖 ⋅𝑇𝑖𝑡𝑒𝑟+𝐶𝑐𝑜𝑚𝑚 <= 𝐶

𝑃−1
∑
0
𝐶𝑐𝑜𝑚𝑝𝑖 ⋅(

𝑃−1
∑
0
𝑡𝑖+𝑁𝑏 ⋅𝑡𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟+𝑚𝑎𝑥𝑃0 (𝑡𝑠𝑦𝑛𝑐𝑖))+𝐶𝑐𝑜𝑚𝑚 <= 𝐶

where∑𝑃−1
0 𝑡𝑖 stands for the pipeline warmup and cooldown

phase,𝑁𝑏 is the number ofmicrobatches processed per pipeline,
and 𝑡𝑠𝑦𝑛𝑐𝑖 is the time required for the synchronization of all
replicas of stage 𝑖 . Since large models usually train with large
global batch sizes, the 𝑁𝑏 ⋅ 𝑡𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟 term usually determines
the iteration time, we can rewrite as:

𝑃−1
∑
0
𝐶𝑐𝑜𝑚𝑝𝑖

⋅ (𝑁𝑏 ⋅ 𝑡𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟) +𝐶𝑐𝑜𝑚𝑚 <= 𝐶 (2)

From a dynamic programming perspective, assuming we are
at pipeline stage 𝑖 , which has a maximum budget limit 𝐶𝑐𝑢𝑟 ,
the cost constraint will be: 𝐶𝑖 +𝐶𝑟𝑒𝑚 <= 𝐶𝑐𝑢𝑟 , where 𝐶𝑟𝑒𝑚 is
the cost of the remaining stages, and 𝐶𝑖 is the cost of stage 𝑖 .
From Eq. 2, we have that𝐶𝑖 = 𝐶𝑐𝑜𝑚𝑝𝑖 ⋅(𝑁𝑏 ⋅𝑡𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟)+𝐶𝑐𝑜𝑚𝑚𝑖

.
In Listing 1, line 14, when exploring a resource combination
𝑟 , we can easily find 𝐶𝑐𝑜𝑚𝑝𝑖 , and 𝐶𝑐𝑜𝑚𝑚𝑖

for stage 𝑖 . Since
we do not know 𝑡𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟 , which is required to specify the
remaining budget for the next stages, we use the approx-
imation in lines 17-32: We begin assuming stage 𝑖 is the
straggler (𝑡𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟 == 𝑡𝑖), and compute the𝐶𝑟𝑒𝑚 for the next
stages accordingly. We call the solve_dp function for the next
stages giving 𝐶𝑟𝑒𝑚 as the budget constraint (line 20). If a
solution cannot be found, we proceed with the next resource
combination for stage 𝑖 (line 22). If a solution is found, we
check whether it is within the cost limit and keep the one
with the maximum throughput (line 26). We also check the
straggler of the found solution: if it is the same with the
one we assumed, we break, and proceed to the next resource
combination (lines 26-28). Otherwise, we adjust the budget
with the new straggler (lines 31-32) and iterate again.

4.3 Sailor Simulator
The planner uses the simulator to evaluate the performance
and memory footprint of the generated plans. The Sailor
simulator takes as input a training job specification (model,
global batch size, optimizer, hyperparameters) and a job par-
allelization plan. It then estimates the memory footprint per
GPU, the iteration time, and the cost per iteration. The sim-
ulator allows the planner to easily specify different types of
heterogeneity: hardware heterogeneity (GPU type, number
of GPUs per node, and network bandwidth) and job con-
figuration heterogeneity (number of pipelines and different
stage configurations per pipeline). The training configura-
tion also specifies the microbatch size. The simulator also
incorporates the information collected by the profiler about
the training job and network bandwidth of the used links.

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Strati, et al.

Listing 1. Resource-Stage assignment algorithm
1 def solve_dp(P, i, R, D, tp_gpu_stages, Ci):
2 Rcombos = generate_combos(R,D,tp_gpu_stages[i])
3 if i==P−1:
4 time_i = None
5 for r in Rcombos:
6 next_region = find_region_fits(i, r, curr_region)
7 time_ir = time_for_stage(i,r,next_region)
8 cost_ir = cost_for_stage(i, r, next_region, time_ir)
9 if cost_ir <= Ci: time_i =min(time_i, time_ir)
10 T_iter[P][i][R] = time_i
11 else:
12 time_all = None, min_time = None
13 for r in Rcombos:
14 next_region = find_region_fits(i, r, curr_region)
15 time_i = time_for_stage(i,r,next_region)
16 cost_i = cost_for_stage(i, r, next_region, time_i)
17 C_rem = Ci − cost_i
18 assumed_straggler = time_i
19 while (C_rem > 0):
20 nextconf = solve_dp(P, i+1, R−r,
21 next_region, all_regions, C_rem)
22 if nextconf is None: break
23 time_all = total_time(time_i, nextconf.time)
24 cost_all = total_cost(cost_i, nextconf.cost)
25 if nextconf.straggler < assumed_straggler:
26 if (cost_all <= Ci):
27 min_time =min(time_all, min_time)
28 break
29 cost_i = cost_for_stage(i, r, next_region,
30 straggler=nextconf.straggler)
31 C_rem = Ci − cost_i
32 assumed_straggler = nextconf.straggler
33 T_iter[P][i][R] = min_time
34 return T_iter[P][i][R]

Both the Sailor planner and simulator treat GPUs as black-
box compute units, thus they can seamlessly support GPUs
from different generations, vendors, and even different ac-
celerators (e.g. TPUs).
Memory footprint estimation: The Sailor simulator

accurately estimates a training job’s memory footprint by:
1) calculating memory footprint per GPU, per-stage and 2)
considering all main sources of memory footprint during
training. Compared to prior works that assume a homoge-
neous memory footprint per stage, we observe that for a
given parallelism configuration, the memory footprint of a
training worker depends on its layer partitioning, pipeline
stage index, tensor parallelism degree, and microbatch size.
Hence, memory footprint varies among workers and needs
to be analyzed per worker to detect OOM scenarios.

Second, the peak memory footprint of a worker through-
out training consists of various sources, often ignored in
prior works. The peak memory footprint𝑀𝑝𝑒𝑎𝑘 of a worker

is given by:𝑀𝑝𝑒𝑎𝑘 =𝑀𝑚𝑜𝑑𝑒𝑙+𝑀𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 , where𝑀𝑚𝑜𝑑𝑒𝑙 corre-
sponds to thememory needed to keep copies of model param-
eters and is given by 𝑀𝑚𝑜𝑑𝑒𝑙 = 𝑛𝑢𝑚_𝑝𝑎𝑟𝑎𝑚𝑠 ⋅𝑚𝑢𝑙_𝑓 𝑎𝑐𝑡𝑜𝑟 ⋅
𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒_𝑠𝑖𝑧𝑒 . 𝑛𝑢𝑚_𝑝𝑎𝑟𝑎𝑚𝑠 is found by the stage id and
tensor parallelism degree of the worker, while𝑚𝑢𝑙_𝑓 𝑎𝑐𝑡𝑜𝑟
accounts for multiple copies needed for the model itself, the
optimizer, gradients, and communication [46]. 𝑀𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is
the memory needed for storing layer activations and depends
on the stage id and tensor parallelism degree of a worker,
and microbatch size. By computing the memory footprint for
each worker and comparing with the worker’s GPU capacity,
the simulator can easily detect OOM cases.

Iteration time estimation: We define one iteration as a
full pass over the user-defined global batch size. The itera-
tion time is calculated as:𝑇𝑖𝑡𝑒𝑟 = max(𝑇𝑝𝑝𝑖) +𝑇𝑠𝑦𝑛𝑐 +𝑇𝑢𝑝𝑑𝑎𝑡𝑒 ,
where𝑇𝑝𝑝𝑖 is the time needed for pipeline 𝑖 ,𝑇𝑠𝑦𝑛𝑐 is the time
needed for gradient synchronization at the end of an itera-
tion, and 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 is the time for model update. We compute
𝑇𝑝𝑝𝑖 and 𝑇𝑠𝑦𝑛𝑐 following the formulas described in [56] for
1F1B pipeline parallelism, using our profiling for network
bandwidth with respect to the message size per network
link, to estimate communication time (for peer-to-peer and
collectives). For each pipeline, the 1F1B pipeline parallelism
schedule includes a warm-up, steady, and cool-down phase
per iteration, where the steady phase is determined by the
stage with the largest computation time (straggler). After
computing the iteration time per pipeline, we compute syn-
chronization time. Taking the maximum time per pipeline
accounts for straggler effects caused by heterogeneity in
GPU generations, inter-GPU, and CPU-GPU interconnects.
Iteration cost estimation: Related works (Table 1) do

not compute the monetary cost of different resource allo-
cation and job configuration combinations, since they only
optimize for throughput. However, a very important met-
ric to account for is cost per iteration, especially with geo-
distributed training, due to costs associated with across-zone
communication. Since Sailor does not change the global
batch size and training hyperparameters, the number of iter-
ations needed to reach convergence is constant, regardless
of the cluster setup and parallelization strategy. Thus, the
monetary cost per iteration indicates the total budget needed
for the whole training. The metric depends both on the cost
of allocated resources, as well as the training throughput and
communication cost. The cost per iteration is given by𝐶𝑖𝑡𝑒𝑟 =
𝐶𝑐𝑜𝑚𝑝 +𝐶𝑐𝑜𝑚𝑚 , where 𝐶𝑐𝑜𝑚𝑝 is the cost due to compute re-
sources, and is calculated as ∑𝑖(𝑁𝑖 ⋅ 𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑔𝑝𝑢𝑖) ⋅𝑇𝑖𝑡𝑒𝑟 ,
for all different GPU types 𝑖 in the cluster. 𝐶𝑐𝑜𝑚𝑚 stands
for the cost for data exchange per iteration (e.g., when us-
ing geo-distributed training in public cloud) and is given by
𝐶𝑐𝑜𝑚𝑚 = ∑𝑖 𝑗(𝑏𝑦𝑡𝑒𝑠𝑖 𝑗 ⋅ 𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑏𝑦𝑡𝑒_𝑖 𝑗) for all zones 𝑖, 𝑗 in
the cluster. 𝑏𝑦𝑡𝑒𝑠𝑖 𝑗 might include traffic for data and pipeline
parallel communication.

Sailor: Automating Distributed Training over Dynamic,
Heterogeneous, and Geo-distributed Clusters SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

4.4 Sailor Distributed Training Framework
The Sailor training framework receives the job configuration
that the planner generates, sets up the cluster, and starts
training. We modified Megatron-DeepSpeed [12] to support
heterogeneous plans and seamless elasticity, to make it com-
patible to planner’s output and allow for fast reconfiguration
when resource availability changes.

Support for heterogeneous plans:We added support
for varying tensor-parallel degrees across data-parallel pairs
per pipeline stage. The framework takes as input a rank
topology for each stage, allowing each rank to belong to
distinct tensor-parallel groups. Different tensor parallelism
per stage affects the pipeline and data parallel communica-
tion, requiring workers to split or replicate activations and
gradients across multiple peers. To accommodate this, we
adjust the PyTorch communication groups and modify the
send/recv and all-reduce operations accordingly.

Support for fault-tolerance and elasticity:TheMegatron-
DeepSpeed framework lacks failure recovery and dynamic
resource reconfiguration: the whole training needs to stop,
and the user needs to manually reconfigure and restart the
job. However, resource availability frequently changes both
in the cloud (especially with spot instances) [56, 60] and
in on-premise datacenters as jobs start or finish [63]. We
introduce modifications for fast reconfiguration. Each job
consists of a controller and multiple workers. The workers
handle training, while the controller monitors their status
and detects resource availability changes. Upon detecting a
change, the controller reinvokes the planner to generate a
new plan and instructs workers to adjust accordingly. We
follow a kill-free approach to minimize reconfiguration time:
existing workers destroy the current communication group,
clean up their GPUmemory, repartition the model, and setup
a new communication group. If additional resources become
available, the controller waits for new workers to initialize
before updating the training configuration. Training restarts
from the latest available checkpoint. We use asynchronous
checkpointing to minimize the rollback time [39, 57].

5 Evaluation
We evaluate Sailor to answer the following questions:

1. How accurately does the Sailor simulator estimate
iteration time and memory footprint?

2. Howwell does the Sailor planner perform compared to
baselines in homogeneous and heterogeneous setups,
in terms of throughput and monetary cost?

3. How is the Sailor planner search time affected by the
cluster size, resource heterogeneity, user constraints
and the different optimizations?

System configurations: We evaluate Sailor using real
hardware and simulations. We use different cluster setups

and GPU generations, in both cloud environments and on-
premise clusters. In the public cloud, we used VMswith A100-
40GB and V100-16GB from GCP [10]. For our on-premise
datacenter experiments, we used a cluster with up to 32
homogeneous machines with 4 Grace-Hopper GPUs each,
and a cluster of heterogeneousmachines with 2x8 Titan-RTX,
3x8 RTX-2080, and 2x8 RTX-3090.

Models:Weuse theOPT-350M [20] andGPT-Neo-2.7B [19]
models, with global batch size of 2048 sequences, and se-
quence length of 2048 tokens, with the Adam optimizer.
Baselines: To our knowledge, we present the first com-

prehensive comparison of major planners for large-scale
ML training, including planners targeting homogeneous re-
sources (Piper [59], Varuna [3], Aceso [31]), heterogeneous
resources (AMP [27], Metis [62], FlashFlex [72]), and geo-
distributed training (DTFM[74]). All baselines, except Aceso,
are integrated into our platform with a unified Python API.
We profile our models once and give each baseline its re-
quired profiling information. Aceso defines its own operators,
which we profile separately. As Aceso also uses the Mega-
tron backend, per-layer runtime profiles are very close to
our models. We used the open-source version of all baselines.
DTFM [74] does not determine parallelization strategies (e.g.,
DP, PP), but instead partitions a given plan. Therefore, we ex-
haustively generated all homogeneous parallelization plans
and applied their partitioning methods to each. As the At-
las paper does not have an open-source implementation of
runtime and memory simulation, we were unable to test
Atlas end-to-end. However, we tested the zone assignment
described in the paper [41], which performs similar to Sailor.

5.1 Validation of the Sailor simulator
We evaluate the accuracy of the Sailor simulator’s iteration
time and memory footprint estimations. We vary the number
of devices and parallelization plans, find the difference in
iteration time and peak memory footprint, and summarize
using box plots. We omit AMP and DTFM since they do not
support memory estimation.
Cluster of homogeneous GPU types. Figures 5a and

5b show the iteration time and peak memory footprint esti-
mation error for the homogeneous cluster of Grace-Hopper
for the OPT-350M model, respectively. Most baselines fail to
accurately capture the peak memory footprint, since they ig-
nore significant memory sources and assume a homogeneous
memory footprint across the different pipeline stages. The
examined baselines exhibit an error of 12.5-74% on average,
while Sailor achieves an average error of 5.56%. Sailor also
reduces the average runtime estimation error in the homo-
geneous setup to 6%, compared to 10-20% for the baselines.

Cluster of Heterogeneous GPU types. Figure 6 shows
the iteration time prediction error for the OPT-350M model
in a heterogeneous cluster of Titan-RTX, RTX-2080, and RTX-
3090. The homogeneous planners (Piper, Varuna, Aceso) do
not consider the differences in forward and backward passes

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Strati, et al.

(a) Peak memory footprint estimation

(b) Iteration time estimation

Figure 5. Different planners’ compute and memory estima-
tion on a cluster of GH200 GPU for the OPT-350M model.

Figure 6. Different planners’ iteration time on a cluster with
heterogeneous GPUs for the OPT-350M model.

of the different GPU types, resulting in an average error of
28%, 47%, and 37%, respectively. Even heterogeneous plan-
ners fail to accurately capture runtime: since FlashFlex relies
on the theoretical performance of GPUs, it cannot accurately
predict the runtime, getting an error of 69%. Metis fails to
fully capture the heterogeneous network bandwidth between
nodes, thus miscalculating the communication cost, result-
ing in 28% error in iteration time estimation, on average.On
average, Sailor’s iteration time estimations error is 4.5%.

5.2 Sailor Planner vs. Baselines
We evaluate the throughput achieved by Sailor and the base-
lines across various cluster configurations using both real
hardware and our simulator. All baselines require a prede-
fined resource topology as input: we consider 4-GPU VMs for
each GPU type. Sailor takes resource quotas as input (total
number of GPUs per type per zone) and jointly determines
both the topology (VM allocation) and the parallelization
plan. For Metis, we impose a 300-second time limit and use
the best solution found within that period, if available. We
summarize key takeaways.

5.2.1 Homogeneous Setups. Figure 7 shows the through-
put achieved using the baseline planners and Sailor with
only A100 GPUs for the OPT-350M model. Varuna failed to
generate a valid plan that would not lead to OOM errors due

Figure 7. Comparison of the different planners considering
A100-40GB GPUs for the OPT-350M model in one zone

to the poor memory estimation, and its limited search space
(only supporting 2D parallelism). Sailor improves through-
put by 1.15× compared to the closest baseline (DTFM), and
even up to 5.7× (compared to Aceso).

5.2.2 Heterogeneous Setups. Weevaluate Sailor’s through-
put compared to baselines (AMP, Metis, and FlashFlex) in
a heterogeneous cluster setup using a mixture of A100 and
V100. We vary the ratio and amount of A100 and V100 (50%-
50% and 25%-75%) to assess the impact of having more low-
end GPUs in the cluster [16]). As in the homogeneous setup,
all baselines get a fixed resource topology (4-GPU VMs) as
input, while Sailor also determines the resource topology
along with the parallelization plan.

Throughput of heterogeneous baselines: Figures 8 and 9
use our simulator to evaluate Sailor and the baselines in large
heterogeneous clusters for the OPT-350M and GPT-Neo-
2.7B model, respectively. We also compare the throughput
achieved by Sailor, when using only homogeneous resources
(either A100 or V100). We also report the monetary cost per
iteration at each scenario (number on top of bar), and the
number of plans generated by the baseline that would lead
to OOM before a valid plan was found (bold number on
top of bar). Although AMP achieves high throughput in the
homogeneous case, it performs poorly in the heterogeneous
scenario, as it only allows for homogeneous plans, and does
not correctly model stragglers. As a result, the monetary
cost per iteration also increases. Furthermore, since AMP
does not model training memory footprint, it leads to a large
number of OOM plans, especially in the case of the GPT-Neo
model (Figure 9).

FlashFlex achieves similar or higher throughput thanAMP,
as it can consider heterogeneous plans, and captures differ-
ences in compute between the different GPUs. However, its
throughput is still low, as it uses low tensor parallelism and
microbatch sizes. This leads to higher iteration costs (e.g.
Figure 8), since it uses a large number of resources with
a low throughput. It also fails to find valid plans for the
large GPT-Neo model due to suboptimal memory estimation.
Metis capped at 300 seconds achieves higher throughput than
FlashFlex and AMP, due to more accurate runtime and mem-
ory footprint estimation, layer partitioning, load balancing,
and exhaustive search of different GPU group combinations,
but it generates a huge number of OOM plans (Figure 9).

Sailor: Automating Distributed Training over Dynamic,
Heterogeneous, and Geo-distributed Clusters SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

(a) 50% A100, 50% V100 (b) 25% A100, 75% V100

Figure 8. Comparison of planners considering A100 and V100 GPUs for the OPT-350M model in 1 zone

(a) 50% A100, 50% V100 (b) 25% A100, 75% V100

Figure 9. Comparison of planners considering A100 and V100 GPUs for the GPT-Neo-2.7B model in 1 zone

Sailor achieves significantly higher throughput compared
to baselines: for the OPT-350M model, Sailor achieves 1.9×,
2.03×, and 1.15× higher throughput compared to AMP, Flash-
Flex, and Metis, respectively, when the ratio of A100 and
V100 GPUs is equal, and 1.57×, 1.55×, 1.39× higher through-
put when more V100 are available. The speedups are similar
for the GPT-Neomodel as well. Compared to baselines, Sailor
uses larger tensor parallelism and longer pipelines, account-
ing for data parallelism limitations among heterogeneous
nodes (for example AMP uses data parallelism of 256 in
Figure 12 which significantly increases the data parallelism
communication cost.) Also, Sailor does not output invalid
plans, significantly improving the plan deployment com-
pared to baselines with 10s of invalid plans. Sailor’s ability
to discover efficient resource topologies and parallelization
plans also translates to significantly lower cost compared to
the baselines (up to 2.67× lower cost compared to baselines
in Figures 8 and 9).

We also evaluated Sailor and the other heterogeneous base-
lines with real hardware using a smaller cluster of A100 and
V100 GPUs. Figure 10 shows the throughput achieved for the
OPT-350M model when using an equal amount of GPUs per
type (8 each), and when using more V100 than A100, as V100
were more readily available. When using the same number
of GPUs per type, Sailor outperforms the baselines by 1.08-
1.81× and does not generate any Out-Of-Memory plans. In
contrast, AMP and Metis generate 5 and 1 invalid (OOM)

plans before finding a valid plan, respectively. The valid plan
found by Metis is similar to Sailor’s, but Sailor avoids invalid
outputs entirely, and finds a solution in less than 1 sec, while
Metis takes 60 sec. When using 8 A100 and 16 V100 GPUs,
Metis fails to output a plan as it requires the global batch
size to be equally divisible by the total number of GPUs. We
therefore reuse the plan from the 16 GPU case. AMP pro-
duces the same plan for the 24 GPU case as the 16 GPU case,
while the plan provided by FlashFlex utilizes all 24 GPUs but
uses an unnecessarily large number of pipeline stages that
degrades throughput. Sailor outperforms the baselines by
1.19-2× for the 24 GPU scenario. Our simulator’s estimated
iteration times were within 4% of those measured on real
hardware.

Search times: Table 2 shows the search time for Figure 9b
for the different baselines. Metis has long search times. In
our experiments, we let Metis search for up to 300 seconds
and take the best plan it produces in this time window. The
other baselines are significantly faster, finishing their search
in less than 200 seconds in all cases. Sailor keeps the search
time within 1 minute even for the largest case (512 GPUs)
due to its efficient search algorithm.

Benefits of heterogeneity: Figures 8, 9 and 10 also show
the throughput achieved by Sailor when given homogeneous-
only setups of A100 (Sailor-A100) or V100 GPUs (Sailor-
V100). Given that V100s are less efficient than A100s, using
A100 only, or a mixture of A100 and V100 is always better

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Strati, et al.

Baseline A100-V100
32-96 80-240 128-384

AMP 31.22 51.43 86.41
FlashFlex 4.05 54.67 222.64
Metis 300 300 300
Sailor 1.6 7.67 17.4

Table 2. Search times (in seconds) for Figure 9b.

Figure 10. Throughput of heterogeneous planners for clus-
ters of A100 and V100 GPUs for the OPT-350M model.

than using V100 only. However, using V100 in addition to
A100 does not always improve throughput. Heterogeneity is
more beneficial when resources are limited (e.g. Figure 8a,
with 32 GPUs per type), or with larger models like GPT-Neo.
In fact, for the OPT-350M model, when 128 A100 and 128
V100 are available, Sailor chooses a plan with 128 A100 only,
as it determines that no additional benefits will be gained by
adding extra resources. Moreover, when the ratio of V100 to
A100 is higher than 1, the throughput improvents are more
significant, as shown in Figures 10, 8b and 9b, where the
V100:A100 ratio is 2:1 or 3:1. This aligns with the GPU mem-
ory capacity ratio, as well as the time for forward/backward
pass for the transformer layers of the two GPU types, en-
abling better load balancing. Finally, heterogeneity leads to a
higher cost, as more resources are used. Since the objective is
to maximize throughput, Sailor ignored monetary cost when
searching job configurations. In §5.2.4, we will show Sailor’s
ability to consider budget optimization and constraints.
Key takeaway 1: Heterogeneity is most beneficial

when resources are limited, or for larger models, or
when the ratio of the different GPU types aligns with
their memory and compute characteristics for better
load balancing.

5.2.3 Geo-distributed setups. In Figures 11 and 12, we
evaluate Sailor’s throughput in geo-distributed setups, con-
sidering A100 GPUs for the OPT-350M model. We com-
pare Sailor with DTFM, with the exhaustive search to auto-
matically discover parallelization plans. We report training
throughput and monetary cost per iteration, taking both the
computation and communication cost into account.

Small-scale results on real hardware: Figure 11 shows
an experiment with small-scale cluster in 4 cloud zones (2 re-
gions) using 4 and 8 A100 GPUs per zone. DTFM cannot fully

Figure 11. Throughput of geo-distributed planners with
A100-40GB for the OPT-350M model in 4 zones (2 regions)
using real GPUs.

Figure 12. Throughput of geo-distributed planners with
A100-40GB for the OPT-350M model in 5 zones (2 regions)
using our simulator.

leverage multiple zones, mainly due to its suboptimal cost
function and lack of memory footprint estimation. DTFM
ranks solutions based on the time spent in data and pipeline
parallel communication, which leads to suboptimal solu-
tion ranking. Furthermore, it uses all cloud regions, which
increases communication bottlenecks and cost without in-
creasing throughput. In contrast, Sailor uses only 1 region
with all available zones (us-central1), as incorporating an
additional region (us-west1) does not improve throughput.
Sailor leads to 1.9× and 2.45× higher throughput than DTFM
for two cluster sizes. Our simulator was within 3.7% of the
real throughput in this scenario.

Large-scale results on simulation: In Figure 12 we use
our simulator to evaluate larger cluster sizes with 5 cloud
zones (2 regions). Sailor achieves 5.9× higher throughput and
9.48× lower cost per iteration than DTFM. Sailor employs
larger microbatch sizes and tensor parallelism degrees, re-
ducing the pipeline and data parallel data transfers. Further-
more, Sailor finds configurations within 1 second, compared
to DTFM that needs hundrend of seconds with large clusters
(due to the exhaustive search). On GPT-Neo, DTFM fails due
to OOMs, while Sailor finds valid plans with a throughput
of 0.07–0.21 iters/sec across cluster sizes.

Finally, comparing Sailor’s throughput for the OPT-350M
model in the heterogeneous setups with more V100 (Fig-
ure 8b) and the geo-distributed A100-only setup (Figure 12),
shows that the geo-distributed setup achieves up to 2× higher
throughput, and also lower cost.

Key takeaway 2: Efficiently using the same GPU type
across zones can lead to higher throughput and lower
cost than mixing GPU types within a single zone, de-
spite data transfer costs in geo-distributed setups.

Sailor: Automating Distributed Training over Dynamic,
Heterogeneous, and Geo-distributed Clusters SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

Figure 13.Minimizing cost with a throughput constraint.

Figure 14. Maximizing throughput with budget limit.

5.2.4 Optimization with constraints. We now change
the optimization objective to minimizing monetary cost and
add constraints. Since baselines do not support cost-aware
optimization or constraints, we modify them to rank so-
lutions by iteration cost and only return plans within the
constraints. We consider 2 cloud zones in the same region,
each with 128 A100 and 128 V100. Sailor takes the full search
space and outputs the resource allocation and parallelization
plans. The baselines (that require a fixed topology) assume
4-GPU VMs: Varuna, Aceso, Galvatron consider only the
A100 machines (since they are more high-end than V100).
AMP, FlashFlex, and Metis consider both A100 and V100 in a
single zone, while DTFM considers only A100 in two zones.
Scenario 1: Minimizing cost with throughput con-

straint of 0.2 iterations/sec: Figure 13 shows the through-
put (bars) and iteration cost (asterisks) achieved by the differ-
ent planners. Sailor outputs a solution within the constraint,
while achieving the minimum cost compared to baselines:
40% lower cost compared to the second-best performing base-
line (Galvatron). The found solution consisted of 64 A100
GPUs in a single zone, as they were enough to meet the
throughput target.
Scenario 2: Maximizing throughput with cost con-

straint of 1.2 USD/iteration: Figure 14 shows the through-
put (bars) and iteration cost (asterisks). Most baselines will
use all available resources (e.g. all 128 A100 and 128 V100),
even if they do not benefit throughput. DTFM does not find
a solution as it outputs plans with low throughput and high
costs. Sailor outperforms all baselines leading to 1.65-3×
higher throughput while remaining within the cost con-
straint. Sailor’s plan includes 256 A100 GPUs in two zones,
with tensor parallelism of 4, and data parallelism of 64.

GPU types Search Time
Dyn Prog + Heuristics + cost limit

1 hours 0.25 sec 0.4 sec
2 hours 5 sec 20 sec

Table 3. Breakdown of search time, in dynamic program-
ming and heuristics, and additional search time overhead
due to budget constraints for the GPT-Neo-2.7 model. We
use A100 and V100 in one zone, with 128 GPUs per type. The
budget constraint is 1.5 USD/iteration.

5.3 Sailor scalability study
We evaluated Sailor’s search time varying the number of
GPUs and zones or regions with a homogeneous GPU type.
The search time remains below 1.5 sec even with 5 GCP
zones and 256 A100/zone for the GPT-Neo-2.7B model. In
contrast, adding more GPU types has a much higher impact
in Sailor’s search time: considering 256 GPUs/type in a single
zone, Sailor’s search time is 0.3, 6.2, 4900 sec for 1, 2, 3 GPU
types, respectively. Nevertheless, Sailor’s search process is
much more efficient than the rest of the heterogeneous base-
lines: Metis [62] needs hours to complete its search even
with 2 GPU types, while FlashFlex [72] cannot find a valid
configuration for any of these setups.

5.4 Sailor Planner optimization breakdown
Table 3 shows Sailor’s planner search time breakdown when
optimizing for throughput, and budget constraint overhead,
considering 128 A100 and 128 V100 GPUs for the GPT-Neo-
2.7bmodel. The dynamic-programming-only approach needs
hours to complete the search, even in the single-GPU-type
case. Introducing the heuristics H1-H3 (4.2.1), which apply in
this scenario, dramatically decreases the search time to a cou-
ple of seconds. The additional cost constraint increases the
search time (4× increase in the 2-GPU-type scenario) due to
the extra iterations caused by the straggler approximations,
as described in 4.2.3.

5.5 Reconfiguration overheads
We measure Sailor’s reconfiguration time on a cluster of 16
V100 GPUs for the OPT-350M model. When 4 more GPUs
are added, the controller re-invokes the planner, instructs
workers to clean up (e.g., destroy NCCL groups), and broad-
casts the new plan and topology. Planning takes 0.1 seconds,
process cleanup takes 3 seconds, and topology broadcast
(using grpc) takes 1.25 seconds. After the workers have re-
ceived the new plan and topology, they reinitialize NCCL
communication groups (for data, pipeline, tensor parallelism)
in 4.5 seconds, redefine the model and optimizer in 2 seconds,
redefine the dataloaders in 0.5 seconds, and resume training.
While moderate at this scale, NCCL initialization can take
minutes on thousands of GPUs [25]. Existing methods to
reduce this overhead [25] can be integrated into Sailor.

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Strati, et al.

6 Discussion
Planner and simulator limitations: Our planner and
simulator currently support only the 1F1B pipeline paral-
lel schedule, and do not incorporate optimizations such as
activation offloading [47] or rematerialization [75]. Adding
support for these optimizations is left for future work.

Additional challenges with heterogeneous hardware:
Training over heterogeneous and geo-distributed datacen-
ters can introduce additional challenges. Heterogeneity in
accelerator vendors (e.g., NVIDIA vs. AMD) and network
links (e.g., Infiniband vs. Ethernet) may prevent the use of
high-performance collective communication libraries (e.g.,
NCCL), which often assume uniform network protocols. To
maximize performance, collectives must be adapted to het-
erogeneous links. Furthermore, geo-distributed networks
are prone to unreliability, including unpredictable jitter and
packet loss. Training frameworks and algorithms should de-
tect and adapt to such issues. Finally, even though Sailor
optimizes parallelization strategies, it is based on strategies
that were first introduced for homogeneous settings (e.g.
1F1B pipeline schedule). Achieving high performance in such
contexts may require developing new schedules that more
effectively overlap computation and communication, thereby
reducing bubble times [7].

7 Other Related Work
Asynchronous geo-distributed training: Several systems
propose training over geo-distributed, preemptible, and het-
erogeneous resources by introducing asynchrony and re-
ducing communication via quantization and sparsification.
DiLoCo [13] uses federated averaging to reduce communica-
tion, performing more local computation before synchroniza-
tion. SWARM [49] proposes a decentralized, model-parallel
approach to deal with poorly connected and unreliable de-
vices. CocktailSGD [65] uses gradient compression to im-
prove communication over low-bandwidth networks. These
approaches influence training dynamics and are orthogonal
to our work. Sailor employs synchronous training, which is
preferred in large-scale training [63].

Automatic VM selection: CherryPick [2], RAMBO [28],
and PARIS [71] apply Bayesian Optimization or performance
modeling to recommend optimal VM types. SkyPilot [73]
picks cost-efficient VMs across providers based on work-
load and user constraints. These methods treat workloads as
black boxes and are not tailored for ML training. Srifty [32],
Cynthia [77], SpotDNN [53], DeepSpot [26] find optimal con-
figurations of on-demand and spot instances for ML jobs.
However, they target small data-parallel jobs, and are inade-
quate for large-scale training that involves various types of
communication, which is our focus.
Heterogeneous and Geo-distributed ML Inference:

Recent works have proposed systems for ML inference on

heterogeneous and geo-distributed resources [24, 33, 34]. Al-
though training and inference workloads differ significantly
(e.g. in runtime and memory footprint estimation), synchro-
nization and communication patterns as well as planning
decisions such as partitioning models across resources are
relevant to both. Helix [34] and HexGen [24] consider both
heterogeneous and geo-distributed resources for LLM in-
ference. Helix uses a time-consuming MILP algorithm for
model placement, which is not suitable for environments
with high resource availability. HexGen uses a more light-
weight dynamic programming approach for splitting tensor
and pipeline parallelism across resources, making it more
appropriate for dynamic settings. However, both of these
works optimize only for performance, ignoring the monetary
communication costs that arise in geo-distributed settings.
SkyServe [33] places replicas of models across zones and
regions, but restricts each replica to a single zone and ho-
mogeneous resources. As replicas do not communicate in
inference, inter-zone communication is not considered. In
contrast, Sailor targets geo-distributed training, which re-
quires frequent communication among data-parallel replicas,
substantially increasing scheduling complexity.

8 Conclusion
We propose Sailor, a system for efficient large-scale train-
ing over heterogeneous resources with dynamic availability.
Sailor co-optimizes the resource allocation and paralleliza-
tion plan for a training job to optimize a user-defined ob-
jective, under constraints. By combining accurate iteration
time and memory estimation, dynamic-programming based
search, and domain-specific heuristics, Sailor efficiently nav-
igates the large search space of possible job configurations.
Sailor’s distributed training framework supports heteroge-
neous setups and provides seamless elasticity. Sailor achieves
1.1-5.9× higher throughput than baselines across homoge-
neous, heterogeneous, and geo-distributed settings.

9 Acknowledgements
We thank the SOSP’25 anonymous reviewers and our shep-
herd, Ionel Gog, for their insightful feedback. We also thank
Christina Giannoula for her feedback on the paper, and
Michal Friedman for the helpful discussions. This work was
supported under project ID infra02 as part of the Swiss AI
Initiative, through a grant from the ETH Domain and com-
putational resources provided by the Swiss National Super-
computing Centre (CSCS) under the Alps infrastructure. We
thank the CSCS team for their technical support. Foteini
Strati is supported by the Swiss National Science Founda-
tion (project number 200021_204620). George Manos is an
Onassis Foundation scholar.

Sailor: Automating Distributed Training over Dynamic,
Heterogeneous, and Geo-distributed Clusters SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

References
[1] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit

Gupta, Manoj Chakkaravarthy, David Brooks, and Carole-Jean Wu.
2023. Carbon Explorer: A Holistic Framework for Designing Car-
bon Aware Datacenters. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023).
Association for Computing Machinery, New York, NY, USA, 118–132.
https://doi.org/10.1145/3575693.3575754

[2] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. 2017. CherryPick: Adap-
tively Unearthing the Best Cloud Configurations for Big Data Ana-
lytics. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, Boston, MA, 469–
482. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/alipourfard

[3] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ram-
jee, and Nipun Kwatra. 2022. Varuna: scalable, low-cost training of
massive deep learning models. In Proceedings of the Seventeenth Euro-
pean Conference on Computer Systems (Rennes, France) (EuroSys ’22).
Association for Computing Machinery, New York, NY, USA, 472–487.
https://doi.org/10.1145/3492321.3519584

[4] AWS. 2025. Overview of Data Transfer Costs for Common Architec-
tures. https://aws.amazon.com/blogs/architecture/overview-of-data-
transfer-costs-for-common-architectures/.

[5] Azure. 2025. Azure, Bandwidth pricing. https://azure.microsoft.com/
en-us/pricing/details/bandwidth/.

[6] Baseline. 2024. China achieves breakthrough in AI training.
https://www.baselinemag.com/news/china-achieves-breakthrough-
in-ai-training/.

[7] Tiancheng Chen, Ales Kubicek, Langwen Huang, and Torsten Hoe-
fler. 2025. CrossPipe: Towards Optimal Pipeline Schedules for Cross-
Datacenter Training. arXiv:2507.00217 [cs.DC] https://arxiv.org/abs/
2507.00217

[8] Runxiang Cheng, Chris Cai, Selman Yilmaz, Rahul Mitra, Malay Bag,
Mrinmoy Ghosh, and Tianyin Xu. 2023. Towards GPU Memory Effi-
ciency for Distributed Training at Scale. In Proceedings of the 2023 ACM
Symposium on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’23).
Association for Computing Machinery, New York, NY, USA, 281–297.
https://doi.org/10.1145/3620678.3624661

[9] Tapan Chugh, Srikanth Kandula, Arvind Krishnamurthy, Ratul Ma-
hajan, and Ishai Menache. 2023. Anticipatory Resource Allocation
for ML Training. In Proceedings of the 2023 ACM Symposium on
Cloud Computing (Santa Cruz, CA, USA) (SoCC ’23). Association
for Computing Machinery, New York, NY, USA, 410–426. https:
//doi.org/10.1145/3620678.3624669

[10] Google Cloud. 2024. Google Cloud - About GPUs. https://cloud.google.
com/compute/docs/gpus/about-gpus.

[11] Google Cloud. 2025. Google Cloud, All networking pricing. https:
//pytorch.org/docs/stable/torch_cuda_memory.html.

[12] deepspeedai. 2025. Megatron-DeepSpeed. https://github.com/
deepspeedai/Megatron-DeepSpeed.

[13] Arthur Douillard, Qixuan Feng, Andrei A. Rusu, Rachita
Chhaparia, Yani Donchev, Adhiguna Kuncoro, Marc’Aurelio
Ranzato, Arthur Szlam, and Jiajun Shen. 2024. DiLoCo: Dis-
tributed Low-Communication Training of Language Models.
arXiv:2311.08105 [cs.LG] https://arxiv.org/abs/2311.08105

[14] Jiangfei Duan, Ziang Song, Xupeng Miao, Xiaoli Xi, Dahua Lin, Harry
Xu, Minjia Zhang, and Zhihao Jia. 2024. Parcae: Proactive, Liveput-
Optimized DNN Training on Preemptible Instances. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI
24). USENIX Association, Santa Clara, CA, 1121–1139. https://www.
usenix.org/conference/nsdi24/presentation/duan

[15] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019.

Tiresias: A GPU Cluster Manager for Distributed Deep Learning.
In 16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 19). USENIX Association, Boston, MA, 485–500.
https://www.usenix.org/conference/nsdi19/presentation/gu

[16] Runsheng Benson Guo, Utkarsh Anand, Arthur Chen, and Khuzaima
Daudjee. 2024. Cephalo: Harnessing Heterogeneous GPU Clusters
for Training Transformer Models. arXiv:2411.01075 [cs.DC] https:
//arxiv.org/abs/2411.01075

[17] Toms Hardware. 2025. Meta to build 2GW data center with over 1.3
million Nvidia AI GPUs.

[18] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu
Chen, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,
Yonghui Wu, and Zhifeng Chen. 2019. GPipe: efficient training of
giant neural networks using pipeline parallelism. Curran Associates
Inc., Red Hook, NY, USA.

[19] HuggingFace. 2025. HuggingFace, GPT-Neo. https://huggingface.co/
docs/transformers/en/model_doc/gpt_neo.

[20] HuggingFace. 2025. HuggingFace, OPT. https://huggingface.co/docs/
transformers/en/model_doc/opt.

[21] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and Mosharaf Chowd-
hury. 2023. Oobleck: Resilient Distributed Training of Large Models
Using Pipeline Templates. In Proceedings of the 29th Symposium on
Operating Systems Principles (SOSP ’23). ACM. https://doi.org/10.1145/
3600006.3613152

[22] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie
Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale
Multi-Tenant GPU Clusters for DNN Training Workloads. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Asso-
ciation, Renton, WA, 947–960. https://www.usenix.org/conference/
atc19/presentation/jeon

[23] Xianyan Jia, Le Jiang, Ang Wang, Wencong Xiao, Ziji Shi, Jie Zhang,
Xinyuan Li, Langshi Chen, Yong Li, Zhen Zheng, Xiaoyong Liu,
and Wei Lin. 2022. Whale: Efficient Giant Model Training over
Heterogeneous GPUs. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22). USENIX Association, Carlsbad, CA, 673–688. https:
//www.usenix.org/conference/atc22/presentation/jia-xianyan

[24] Youhe Jiang, Ran Yan, Xiaozhe Yao, Yang Zhou, Beidi Chen, and Bin-
hang Yuan. 2024. HEXGEN: generative inference of large language
model over heterogeneous environment. In Proceedings of the 41st Inter-
national Conference on Machine Learning (Vienna, Austria) (ICML’24).
JMLR.org, Article 881, 16 pages.

[25] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen,
Zhi Zhang, Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu
Jia, Sun He, Hongmin Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding
Zhou, Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei, Zhang
Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang Xiang, Zherui Liu,
Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. 2024. MegaScale:
Scaling Large Language Model Training to More Than 10,000 GPUs.
arXiv:2402.15627 [cs.LG]

[26] Kyungyong Lee and Myungjun Son. 2017. DeepSpotCloud: Leveraging
Cross-Region GPU Spot Instances for Deep Learning. In 2017 IEEE
10th International Conference on Cloud Computing (CLOUD). 98–105.
https://doi.org/10.1109/CLOUD.2017.21

[27] Dacheng Li, Hongyi Wang, Eric Xing, and Hao Zhang. 2022. AMP:
Automatically Finding Model Parallel Strategies with Heterogeneity
Awareness. arXiv:2210.07297 [cs.LG]

[28] Qian Li, Bin Li, Pietro Mercati, Ramesh Illikkal, Charlie Tai, Michael
Kishinevsky, and Christos Kozyrakis. 2021. RAMBO: Resource Alloca-
tion for Microservices Using Bayesian Optimization. IEEE Computer
Architecture Letters 20, 1 (2021), 46–49. https://doi.org/10.1109/LCA.
2021.3066142

[29] Zhiqi Lin, Youshan Miao, Quanlu Zhang, Fan Yang, Yi Zhu, Cheng Li,
Saeed Maleki, Xu Cao, Ning Shang, Yilei Yang, Weijiang Xu, Mao Yang,
Lintao Zhang, and Lidong Zhou. 2024. nnScaler: Constraint-Guided

https://doi.org/10.1145/3575693.3575754
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://doi.org/10.1145/3492321.3519584
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://www.baselinemag.com/news/china-achieves-breakthrough-in-ai-training/
https://www.baselinemag.com/news/china-achieves-breakthrough-in-ai-training/
https://arxiv.org/abs/2507.00217
https://arxiv.org/abs/2507.00217
https://arxiv.org/abs/2507.00217
https://doi.org/10.1145/3620678.3624661
https://doi.org/10.1145/3620678.3624669
https://doi.org/10.1145/3620678.3624669
https://cloud.google.com/compute/docs/gpus/about-gpus
https://cloud.google.com/compute/docs/gpus/about-gpus
https://pytorch.org/docs/stable/torch_cuda_memory.html
https://pytorch.org/docs/stable/torch_cuda_memory.html
https://github.com/deepspeedai/Megatron-DeepSpeed
https://github.com/deepspeedai/Megatron-DeepSpeed
https://arxiv.org/abs/2311.08105
https://arxiv.org/abs/2311.08105
https://www.usenix.org/conference/nsdi24/presentation/duan
https://www.usenix.org/conference/nsdi24/presentation/duan
https://www.usenix.org/conference/nsdi19/presentation/gu
https://arxiv.org/abs/2411.01075
https://arxiv.org/abs/2411.01075
https://arxiv.org/abs/2411.01075
https://huggingface.co/docs/transformers/en/model_doc/gpt_neo
https://huggingface.co/docs/transformers/en/model_doc/gpt_neo
https://huggingface.co/docs/transformers/en/model_doc/opt
https://huggingface.co/docs/transformers/en/model_doc/opt
https://doi.org/10.1145/3600006.3613152
https://doi.org/10.1145/3600006.3613152
https://www.usenix.org/conference/atc19/presentation/jeon
https://www.usenix.org/conference/atc19/presentation/jeon
https://www.usenix.org/conference/atc22/presentation/jia-xianyan
https://www.usenix.org/conference/atc22/presentation/jia-xianyan
https://arxiv.org/abs/2402.15627
https://doi.org/10.1109/CLOUD.2017.21
https://arxiv.org/abs/2210.07297
https://doi.org/10.1109/LCA.2021.3066142
https://doi.org/10.1109/LCA.2021.3066142

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Strati, et al.

Parallelization Plan Generation for Deep Learning Training. In 18th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24). USENIX Association, Santa Clara, CA, 347–363. https:
//www.usenix.org/conference/osdi24/presentation/lin-zhiqi

[30] Linkedin. 2024. The Heat Challenge of AI Infrastructure: A
Growing Concern for Traditional Office Buildings and Older
Data Centers. https://www.linkedin.com/pulse/heat-challenge-ai-
infrastructure-gpu-servers-trgdatacenter-b6vcc.

[31] Guodong Liu, Youshan Miao, Zhiqi Lin, Xiaoxiang Shi, Saeed Maleki,
Fan Yang, Yungang Bao, and Sa Wang. 2024. Aceso: Efficient Parallel
DNN Training through Iterative Bottleneck Alleviation. In Proceedings
of the Nineteenth European Conference on Computer Systems (<conf-
loc>, <city>Athens</city>, <country>Greece</country>, </conf-loc>)
(EuroSys ’24). Association for Computing Machinery, New York, NY,
USA, 163–181. https://doi.org/10.1145/3627703.3629554

[32] Liang Luo, Peter West, Pratyush Patel, Arvind Krishnamurthy, and
Luis Ceze. 2022. SRIFTY: Swift and Thrifty Distributed Neural
Network Training on the Cloud. In Proceedings of Machine Learn-
ing and Systems, D. Marculescu, Y. Chi, and C. Wu (Eds.), Vol. 4.
833–847. https://proceedings.mlsys.org/paper_files/paper/2022/file/
0cafb7890f6a7d4de65507d5bb7e0187-Paper.pdf

[33] Ziming Mao, Tian Xia, Zhanghao Wu, Wei-Lin Chiang, Tyler Griggs,
Romil Bhardwaj, Zongheng Yang, Scott Shenker, and Ion Stoica.
2025. SkyServe: Serving AI Models across Regions and Clouds with
Spot Instances. In Proceedings of the Twentieth European Conference
on Computer Systems (Rotterdam, Netherlands) (EuroSys ’25). As-
sociation for Computing Machinery, New York, NY, USA, 159–175.
https://doi.org/10.1145/3689031.3717459

[34] Yixuan Mei, Yonghao Zhuang, Xupeng Miao, Juncheng Yang, Zhihao
Jia, and Rashmi Vinayak. 2025. Helix: Serving Large Language Models
over Heterogeneous GPUs and Network via Max-Flow. In Proceedings
of the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1 (Rotterdam,
Netherlands) (ASPLOS ’25). Association for Computing Machinery,
New York, NY, USA, 586–602. https://doi.org/10.1145/3669940.3707215

[35] Meta. 2025. The Llama 4 herd: The beginning of a new era of na-
tively multimodal AI innovation. https://ai.meta.com/blog/llama-4-
multimodal-intelligence/.

[36] Xupeng Miao, Yining Shi, Zhi Yang, Bin Cui, and Zhihao Jia. 2023.
SDPipe: A Semi-Decentralized Framework for Heterogeneity-Aware
Pipeline-parallel Training. Proc. VLDB Endow. 16, 9 (may 2023),
2354–2363. https://doi.org/10.14778/3598581.3598604

[37] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie,
Hailin Zhang, and Bin Cui. 2022. Galvatron: Efficient Transformer
Training over Multiple GPUs Using Automatic Parallelism. Proc. VLDB
Endow. 16, 3 (2022), 470–479. https://doi.org/10.14778/3570690.3570697

[38] Zizhao Mo, Huanle Xu, and Chengzhong Xu. 2024. Heet: Accelerating
Elastic Training in Heterogeneous Deep Learning Clusters. In Proceed-
ings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2 (La Jolla,
CA, USA) (ASPLOS ’24). Association for Computing Machinery, New
York, NY, USA, 499–513. https://doi.org/10.1145/3620665.3640375

[39] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021.
CheckFreq: Frequent, Fine-Grained DNN Checkpointing. In 19th
USENIX Conference on File and Storage Technologies (FAST 21). USENIX
Association, 203–216. https://www.usenix.org/conference/fast21/
presentation/mohan

[40] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. 2019. PipeDream: generalized pipeline parallelism for DNN
training. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association
for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/

10.1145/3341301.3359646
[41] Palak, Rohan Gandhi, Karan Tandon, Debopam Bhattacherjee,

and Venkata N. Padmanabhan. 2024. Improving training time
and GPU utilization in geo-distributed language model training.
arXiv:2411.14458 [cs.DC] https://arxiv.org/abs/2411.14458

[42] Palak, Rohan Gandhi, Karan Tandon, Debopam Bhattacherjee,
and Venkata N. Padmanabhan. 2024. Improving training time
and GPU utilization in geo-distributed language model training.
arXiv:2411.14458 [cs.DC] https://arxiv.org/abs/2411.14458

[43] PyTorch. 2025. PyTorch CUDA Events. https://pytorch.org/docs/
stable/generated/torch.cuda.Event.html.

[44] PyTorch. 2025. PyTorch hooks. https://pytorch.org/docs/stable/
generated/torch.Tensor.register_hook.html.

[45] PyTorch. 2025. Understanding CUDA Memory Usage. https://pytorch.
org/docs/stable/torch_cuda_memory.html.

[46] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and
Yuxiong He. 2021. ZeRO-infinity: breaking the GPU memory wall
for extreme scale deep learning. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (<conf-loc>, <city>St. Louis</city>, <state>Missouri</state>,
</conf-loc>) (SC ’21). Association for ComputingMachinery, New York,
NY, USA, Article 59, 14 pages. https://doi.org/10.1145/3458817.3476205

[47] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong
He. 2021. ZeRO-Offload: Democratizing Billion-Scale Model Train-
ing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, 551–564. https://www.usenix.org/conference/
atc21/presentation/ren-jie

[48] Lisa Rivalin, Lingyun Yi, Megan Diefenbach, Alex Bruefach, Frances
Amatruda, and Tobias Tiecke. 2025. Estimating embodied carbon
in data center hardware, down to the individual screws. https:
//sustainability.atmeta.com/blog/2024/09/10/estimating-embodied-
carbon-in-data-center-hardware-down-to-the-individual-screws/.

[49] Max Ryabinin, TimDettmers,Michael Diskin, andAlexander Borzunov.
2023. SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient. arXiv:2301.11913 [cs.DC]

[50] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports,
and Peter Richtarik. 2021. Scaling Distributed Machine Learning with
In-Network Aggregation. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). USENIX Association,
785–808. https://www.usenix.org/conference/nsdi21/presentation/
sapio

[51] Ian Schneider, Hui Xu, Stephan Benecke, David Patterson, Keguo
Huang, Parthasarathy Ranganathan, and Cooper Elsworth. 2025. Life-
Cycle Emissions of AI Hardware: A Cradle-To-Grave Approach and
Generational Trends. arXiv:2502.01671 [cs.AR] https://arxiv.org/abs/
2502.01671

[52] Semaphor. 2024. Microsoft Azure CTO: US data centers will soon hit
size limits. https://www.semafor.com/article/10/11/2024/microsoft-
azure-cto-us-data-centers-will-soon-hit-limits-of-energy-grid.

[53] Ruitao Shang, Fei Xu, Zhuoyan Bai, Li Chen, Zhi Zhou, and Fang-
ming Liu. 2023. spotDNN: Provisioning Spot Instances for Pre-
dictable Distributed DNN Training in the Cloud. In 2023 IEEE/ACM
31st International Symposium on Quality of Service (IWQoS). 1–10.
https://doi.org/10.1109/IWQoS57198.2023.10188717

[54] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2020. Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism.
arXiv:1909.08053 [cs.CL]

[55] Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Esha Choukse, Haoran
Qiu, Rodrigo Fonseca, Josep Torrellas, and Ricardo Bianchini. 2025.
TAPAS: Thermal- and Power-Aware Scheduling for LLM Inference in

https://www.usenix.org/conference/osdi24/presentation/lin-zhiqi
https://www.usenix.org/conference/osdi24/presentation/lin-zhiqi
https://www.linkedin.com/pulse/heat-challenge-ai-infrastructure-gpu-servers-trgdatacenter-b6vcc
https://www.linkedin.com/pulse/heat-challenge-ai-infrastructure-gpu-servers-trgdatacenter-b6vcc
https://doi.org/10.1145/3627703.3629554
https://proceedings.mlsys.org/paper_files/paper/2022/file/0cafb7890f6a7d4de65507d5bb7e0187-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/0cafb7890f6a7d4de65507d5bb7e0187-Paper.pdf
https://doi.org/10.1145/3689031.3717459
https://doi.org/10.1145/3669940.3707215
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://doi.org/10.14778/3598581.3598604
https://doi.org/10.14778/3570690.3570697
https://doi.org/10.1145/3620665.3640375
https://www.usenix.org/conference/fast21/presentation/mohan
https://www.usenix.org/conference/fast21/presentation/mohan
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://arxiv.org/abs/2411.14458
https://arxiv.org/abs/2411.14458
https://arxiv.org/abs/2411.14458
https://arxiv.org/abs/2411.14458
https://pytorch.org/docs/stable/generated/torch.cuda.Event.html
https://pytorch.org/docs/stable/generated/torch.cuda.Event.html
https://pytorch.org/docs/stable/generated/torch.Tensor.register_hook.html
https://pytorch.org/docs/stable/generated/torch.Tensor.register_hook.html
https://pytorch.org/docs/stable/torch_cuda_memory.html
https://pytorch.org/docs/stable/torch_cuda_memory.html
https://doi.org/10.1145/3458817.3476205
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://sustainability.atmeta.com/blog/2024/09/10/estimating-embodied-carbon-in-data-center-hardware-down-to-the-individual-screws/
https://sustainability.atmeta.com/blog/2024/09/10/estimating-embodied-carbon-in-data-center-hardware-down-to-the-individual-screws/
https://sustainability.atmeta.com/blog/2024/09/10/estimating-embodied-carbon-in-data-center-hardware-down-to-the-individual-screws/
https://arxiv.org/abs/2301.11913
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://arxiv.org/abs/2502.01671
https://arxiv.org/abs/2502.01671
https://arxiv.org/abs/2502.01671
https://www.semafor.com/article/10/11/2024/microsoft-azure-cto-us-data-centers-will-soon-hit-limits-of-energy-grid
https://www.semafor.com/article/10/11/2024/microsoft-azure-cto-us-data-centers-will-soon-hit-limits-of-energy-grid
https://doi.org/10.1109/IWQoS57198.2023.10188717
https://arxiv.org/abs/1909.08053

Sailor: Automating Distributed Training over Dynamic,
Heterogeneous, and Geo-distributed Clusters SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

Cloud Platforms. In Proceedings of the 30th ACM International Confer-
ence on Architectural Support for Programming Languages and Oper-
ating Systems, Volume 2 (Rotterdam, Netherlands) (ASPLOS ’25). As-
sociation for Computing Machinery, New York, NY, USA, 1266–1281.
https://doi.org/10.1145/3676641.3716025

[56] Foteini Strati, Paul Elvinger, Tolga Kerimoglu, and Ana Klimovic. 2024.
ML Training with Cloud GPU Shortages: Is Cross-Region the Answer?.
In Proceedings of the 4th Workshop on Machine Learning and Systems
(Athens, Greece) (EuroMLSys ’24). Association for Computing Machin-
ery, New York, NY, USA, 107–116. https://doi.org/10.1145/3642970.
3655843

[57] Foteini Strati, Michal Friedman, and Ana Klimovic. 2025. PCcheck:
Persistent Concurrent Checkpointing for ML. In Proceedings of the 30th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 1 (Rotterdam, Nether-
lands) (ASPLOS ’25). Association for Computing Machinery, New York,
NY, USA, 811–827. https://doi.org/10.1145/3669940.3707255

[58] Foteini Strati, Sara Mcallister, Amar Phanishayee, Jakub Tarnawski,
and Ana Klimovic. 2024. DéjàVu: KV-cache Streaming for Fast, Fault-
tolerant Generative LLM Serving. arXiv:2403.01876 [cs.DC] https:
//arxiv.org/abs/2403.01876

[59] Jakub M Tarnawski, Deepak Narayanan, and Amar Phanishayee. 2021.
Piper: Multidimensional Planner for DNN Parallelization. In Advances
in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran
Associates, Inc., 24829–24840. https://proceedings.neurips.cc/paper_
files/paper/2021/file/d01eeca8b24321cd2fe89dd85b9beb51-Paper.pdf

[60] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao
Jia, Minjia Zhang, Ravi Netravali, and Guoqing Harry Xu. 2023. Bam-
boo: Making Preemptible Instances Resilient for Affordable Training of
Large DNNs. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). USENIX Association, Boston, MA, 497–
513. https://www.usenix.org/conference/nsdi23/presentation/thorpe

[61] tom’s Hardware. 2025. Microsoft surprises analysts with massive 80B
AI investment plans for 2025.

[62] Taegeon Um, Byungsoo Oh, Minyoung Kang, Woo-Yeon Lee, Goeun
Kim, Dongseob Kim, Youngtaek Kim, Mohd Muzzammil, and Myeong-
jae Jeon. 2024. Metis: Fast Automatic Distributed Training on Hetero-
geneous GPUs. In 2024 USENIX Annual Technical Conference (USENIX
ATC 24). USENIX Association, Santa Clara, CA, 563–578. https:
//www.usenix.org/conference/atc24/presentation/um

[63] Marcel Wagenländer, Guo Li, Bo Zhao, Luo Mai, and Peter Pietzuch.
2024. Tenplex: Dynamic Parallelism for Deep Learning using Paralleliz-
able Tensor Collections. In Proceedings of the ACM SIGOPS 30th Sym-
posium on Operating Systems Principles (Austin, TX, USA) (SOSP ’24).
Association for Computing Machinery, New York, NY, USA, 195–210.
https://doi.org/10.1145/3694715.3695975

[64] JaylenWang, Daniel S. Berger, Fiodar Kazhamiaka, Celine Irvene, Chao-
jie Zhang, Esha Choukse, Kali Frost, Rodrigo Fonseca, Brijesh Warrier,
Chetan Bansal, Jonathan Stern, Ricardo Bianchini, and Akshitha Sri-
raman. 2024. Designing Cloud Servers for Lower Carbon. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architec-
ture (ISCA). 452–470. https://doi.org/10.1109/ISCA59077.2024.00041

[65] Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang,
Christopher De Sa, Christopher Re, and Ce Zhang. 2023. CocktailSGD:
fine-tuning foundation models over 500mbps networks. In Proceedings
of the 40th International Conference on Machine Learning (Honolulu,
Hawaii, USA) (ICML’23). JMLR.org, Article 1497, 19 pages.

[66] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS
in the Wild: Workload Analysis and Scheduling in Large-Scale Het-
erogeneous GPU Clusters. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). USENIX Association,

Renton, WA, 945–960. https://www.usenix.org/conference/nsdi22/
presentation/weng

[67] Wikipedia. 2025. GPT-2. https://en.wikipedia.org/wiki/GPT-4.
[68] Wikipedia. 2025. GPT-4. https://en.wikipedia.org/wiki/GPT-4.
[69] Wikipedia. 2025. List of Nvidia graphics processing units. https:

//en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units.
[70] Tianyuan Wu, Wei Wang, Yinghao Yu, Siran Yang, Wenchao Wu,

Qinkai Duan, Guodong Yang, JiamangWang, Lin Qu, and Liping Zhang.
2024. FALCON: Pinpointing and Mitigating Stragglers for Large-Scale
Hybrid-Parallel Training. arXiv:2410.12588 [cs.DC] https://arxiv.org/
abs/2410.12588

[71] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton
Smith, and Randy H. Katz. 2017. Selecting the best VM across multi-
ple public clouds: a data-driven performance modeling approach. In
Proceedings of the 2017 Symposium on Cloud Computing (Santa Clara,
California) (SoCC ’17). Association for Computing Machinery, New
York, NY, USA, 452–465. https://doi.org/10.1145/3127479.3131614

[72] Ran Yan, Youhe Jiang, Wangcheng Tao, Xiaonan Nie, Bin Cui, and Bin-
hang Yuan. 2024. FlashFlex: Accommodating Large Language Model
Training over Heterogeneous Environment. arXiv:2409.01143 [cs.DC]
https://arxiv.org/abs/2409.01143

[73] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil
Bhardwaj, Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam
Mittal, Scott Shenker, and Ion Stoica. 2023. SkyPilot: An Intercloud
Broker for Sky Computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, 437–455. https://www.usenix.org/conference/nsdi23/
presentation/yang-zongheng

[74] Binhang Yuan, Yongjun He, Jared Quincy Davis, Tianyi Zhang, Tri
Dao, Beidi Chen, Percy Liang, Christopher Re, and Ce Zhang. 2023.
Decentralized Training of Foundation Models in Heterogeneous Envi-
ronments. arXiv:2206.01288 [cs.DC]

[75] Tailing Yuan, Yuliang Liu, Xucheng Ye, Shenglong Zhang, Jianchao
Tan, Bin Chen, Chengru Song, and Di Zhang. 2024. Accelerating
the Training of Large Language Models using Efficient Activation
Rematerialization and Optimal Hybrid Parallelism. In 2024 USENIX
Annual Technical Conference (USENIX ATC 24). USENIX Association,
Santa Clara, CA, 545–561. https://www.usenix.org/conference/atc24/
presentation/yuan

[76] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiao-
dan Liang, Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P. Xing.
2017. Poseidon: An Efficient Communication Architecture for Dis-
tributed Deep Learning on GPU Clusters. In 2017 USENIX Annual Tech-
nical Conference (USENIX ATC 17). USENIX Association, Santa Clara,
CA, 181–193. https://www.usenix.org/conference/atc17/technical-
sessions/presentation/zhang

[77] Haoyue Zheng, Fei Xu, Li Chen, Zhi Zhou, and Fangming Liu. 2019.
Cynthia: Cost-Efficient Cloud Resource Provisioning for Predictable
Distributed Deep Neural Network Training. In Proceedings of the 48th
International Conference on Parallel Processing (Kyoto, Japan) (ICPP ’19).
Association for Computing Machinery, New York, NY, USA, Article
86, 11 pages. https://doi.org/10.1145/3337821.3337873

[78] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. 2022. Alpa: Au-
tomating Inter- and Intra-Operator Parallelism for Distributed Deep
Learning. arXiv:2201.12023 [cs.LG]

[79] Kan Zhu, Yilong Zhao, Liangyu Zhao, Gefei Zuo, Yile Gu, Dedong Xie,
Yufei Gao, Qinyu Xu, Tian Tang, Zihao Ye, Keisuke Kamahori, Chien-
Yu Lin, Stephanie Wang, Arvind Krishnamurthy, and Baris Kasikci.
2024. NanoFlow: Towards Optimal Large Language Model Serving
Throughput. arXiv:2408.12757 [cs.DC] https://arxiv.org/abs/2408.
12757

https://doi.org/10.1145/3676641.3716025
https://doi.org/10.1145/3642970.3655843
https://doi.org/10.1145/3642970.3655843
https://doi.org/10.1145/3669940.3707255
https://arxiv.org/abs/2403.01876
https://arxiv.org/abs/2403.01876
https://arxiv.org/abs/2403.01876
https://proceedings.neurips.cc/paper_files/paper/2021/file/d01eeca8b24321cd2fe89dd85b9beb51-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d01eeca8b24321cd2fe89dd85b9beb51-Paper.pdf
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://www.usenix.org/conference/atc24/presentation/um
https://www.usenix.org/conference/atc24/presentation/um
https://doi.org/10.1145/3694715.3695975
https://doi.org/10.1109/ISCA59077.2024.00041
https://www.usenix.org/conference/nsdi22/presentation/weng
https://www.usenix.org/conference/nsdi22/presentation/weng
https://en.wikipedia.org/wiki/GPT-4
https://en.wikipedia.org/wiki/GPT-4
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://arxiv.org/abs/2410.12588
https://arxiv.org/abs/2410.12588
https://arxiv.org/abs/2410.12588
https://doi.org/10.1145/3127479.3131614
https://arxiv.org/abs/2409.01143
https://arxiv.org/abs/2409.01143
https://www.usenix.org/conference/nsdi23/presentation/yang-zongheng
https://www.usenix.org/conference/nsdi23/presentation/yang-zongheng
https://arxiv.org/abs/2206.01288
https://www.usenix.org/conference/atc24/presentation/yuan
https://www.usenix.org/conference/atc24/presentation/yuan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/atc17/technical-sessions/presentation/zhang
https://doi.org/10.1145/3337821.3337873
https://arxiv.org/abs/2201.12023
https://arxiv.org/abs/2408.12757
https://arxiv.org/abs/2408.12757
https://arxiv.org/abs/2408.12757

	Abstract
	1 Introduction
	2 Background
	2.1 ML job parallelization strategies
	2.2 Automating parallelization strategies

	3 Motivation and Challenges
	3.1 Why use heterogeneous, geo-distributed GPUs?
	3.2 Challenges with Heterogeneous ML Clusters

	4 Sailor
	4.1 Sailor Profiler
	4.2 Sailor Planner
	4.3 Sailor Simulator
	4.4 Sailor Distributed Training Framework

	5 Evaluation
	5.1 Validation of the Sailor simulator
	5.2 Sailor Planner vs. Baselines
	5.3 Sailor scalability study
	5.4 Sailor Planner optimization breakdown
	5.5 Reconfiguration overheads

	6 Discussion
	7 Other Related Work
	8 Conclusion
	9 Acknowledgements
	References

