
ML Training with Cloud GPU Shortages:
Is Cross-Region the Answer?

Foteini Strati
ETH Zurich

Paul Elvinger
ETH Zurich

Tolga Kerimoglu
ETH Zurich

Ana Klimovic
ETH Zurich

Abstract
The widespread adoption of ML has led to a high demand
for GPU hardware and consequently, severe shortages of
GPUs in the public cloud. Allocating a sufficient number
of GPUs to train or fine-tune today’s large ML models in a
single cloud region is often difficult. Users can get access to
more GPUs if they are willing to run a ML training job using
devices across different geographical regions. However, GPU
nodes are connected with lower network bandwidth and
cloud providers charge extra for data transfers across geo-
graphical regions. In this work, we explore when and how it
makes sense to leverage GPUs across zones and regions for
distributed ML training. We analyze the throughput and cost
impact of cross-region training based on the computation
and communication patterns of different model parallelism
strategies, develop a profile-based analytical model for esti-
mating training throughput and cost, and provide guidelines
for allocating geo-distributed resources efficiently. We find
that although ML training throughput and cost with pure
data parallelism degrades significantly when nodes span
geographic regions, cross-region training with pipeline par-
allelism is practical.

CCS Concepts: • Computingmethodologies→Machine
learning.

Keywords: Machine Learning, Cloud computing

ACM Reference Format:
Foteini Strati, Paul Elvinger, Tolga Kerimoglu, and Ana Klimovic.
2024. ML Training with Cloud GPU Shortages: Is Cross-Region
the Answer?. In 4th Workshop on Machine Learning and Systems
(EuroMLSys ’24), April 22, 2024, Athens, Greece. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3642970.3655843

1 Introduction
Training or fine-tuning machine learning (ML) models with
millions or billions of parameters requires multiple high-end
hardware accelerators, such as GPUs. Since not all users

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroMLSys ’24, April 22, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0541-0/24/04
https://doi.org/10.1145/3642970.3655843

Figure 1. We request 8 A100 GPUs in 3 different zones in
Google Cloud, re-attempting every 2 hours. Only a small
fraction of GPU allocation requests are granted.

have access to on-premise datacenters, many host their ML
training jobs in the public cloud, where they can choose from
a range of accelerators across a variety of availability zones
and geographical regions. Typically, users deploy distributed
ML jobs within a single availability zone to take advantage
of fast interconnects between virtual machines (VMs).

However, the widespread adoption of ML has led to a GPU
shortage in the public cloud, making it difficult for users to
get a hold of GPUs on-demand in a particular zone [41].
For example, Figure 1 shows how many A100-40GB GPUs
we obtain in Google Cloud (GCP) over a 24 hour window
when requesting 8 GPUs. We repeated the experiment every
2 hours and in three regions, always releasing the GPUs be-
tween experiments. Although we request 8 a2-highgpu-1g
machines in each region, we acquire much fewer. This GPU
scarcity has been acknowledged by other recent works [41].

A natural way to get more GPUs at a time in the cloud is to
allocate GPUs across multiple zones and regions, depending
on current availability. However, there are several challenges
with training ML models across zones. First, when crossing
availability zone boundaries, inter-VM network bandwidth
decreases (e.g., we observe up to 8.05× in GCP) and network
latency increases. Since many distributed ML training jobs
are communication-bound [33], this can significantly impact
training throughput. Second, cloud providers also charge for
the volume of data sent across availability zone boundaries.
For instance, in GCP, the cost per GB can vary from 0.01$
to 0.14$ [2]. Due to the massive size of ML models and the
data they need to exchange across numerous iterations to
reach convergence, the total amount of exchanged data can

https://orcid.org/0000-0003-3364-2109
https://orcid.org/0009-0000-6025-844X
https://orcid.org/0009-0004-1175-338X
https://orcid.org/0000-0001-8559-0529
https://doi.org/10.1145/3642970.3655843
https://doi.org/10.1145/3642970.3655843


EuroMLSys ’24, April 22, 2024, Athens, Greece Foteini Strati, Paul Elvinger, Tolga Kerimoglu, and Ana Klimovic

Figure 2. Examples of spreading distributed training across
regions. VGG-19 and VIT-H-14 are trained with data paral-
lelism, while OPT-30B with pipeline parallelism. Leveraging
GPUs from different regions is beneficial for VGG-19 and
OPT-30B, but not for VIT-H-14.

reach up to TB, which leads to high costs. Since the volume
of data exchanged between particular nodes of an ML job
depends on the model architecture and the type of paral-
lelism, optimizing cross-region training deployments must
take these job characteristics into account. Finally, decid-
ing which zones to use is further complicated by the fact
that GPU prices can vary significantly across zones. Figure 3
shows up to 3.9× difference in A100-GPU prices in AWS.
Figure 2 shows examples of spreading training across 2

regions for 3 different models and 2 different parallelism
techniques (data and pipeline parallelism). We compare the
training throughput achieved when spreading across regions,
and the training throughput when using fewer GPUs (50%) in
a single region. While spreading across regions is beneficial
for VIT andOPT, it leads to worse training throughput for the
VGG model. Therefore, the benefits of spreading distributed
training across regions depend on the model characteristics
and parallelism strategy.
In this work, we ask the question: when and how does it

make sense to use GPUs across zones and regions for large-
scale, distributed training? We develop an analytical model
that can accurately estimate training throughput and cost
under various geo-distributed scenarios and parallelization
strategies. First, we identify the key factors that influence
the performance and cost of cross-region training, such as
the ratio of computation to communication and the amount
of exchanged data. Second, considering the various forms
of ML training parallelism, we build a lightweight profiler
and analytical model, that estimates training throughput and
cost under a variety of configurations. Unlike prior work
that focuses only on small models trained with data paral-
lelism [22], or analyzes only training throughput ignoring
cloud costs [42], our analysis encompasses both data and
pipeline parallelism and examines the training of models

Figure 3. Average hourly spot and on-demand prices for
8-A100 GPUs in GCP and AWS in February 2024

of various scales from Computer Vision (CV) and Natural
Language Processing (NLP) domains.
We find that spreading distributed training across zones

within the same cloud region has minimal effects on train-
ing throughput since the network bandwidth is similar to
single-zone setups (see Table 3). Across-region or across-
continent training is detrimental for data parallelism but has
only modest throughput degradation for pipeline parallelism.
When both data and pipeline parallelism are used, we find
it is helpful to distribute the different pipeline stages across
regions, while maintaining data parallel traffic within one
region.

2 Background and Motivation
2.1 Distributed DNN training
The communication patterns and data exchange volume in
distributed ML training depend on the parallelism method
and influence the optimal cross-region configuration. Here,
we describe the main types of ML training parallelism:
Data Parallelism: During data parallelism, the dataset is
partitioned among the available workers, and the model is
replicated across the workers. After performing one or more
forward and backward passes in local minibatches, the work-
ers synchronize their gradients using techniques such as
all-reduce [33].
Pipeline Parallelism:With pipeline parallelism, model lay-
ers are distributed to multiple GPUs. Each GPU (stage) holds
one or more layers, performs forward and backward passes
for its local layers, and sends and receives activations and
gradients to and from its adjacent stages.
TensorModel Parallelism:Amodel layer or operator, such
as GEMM, is split across multiple GPUs. After each GPU per-
forms its local computations, the results are reduced and
propagated to the next layer. Tensor-model parallelism re-
quires very fast interconnects between GPUs, and is most
commonly limited within GPUs of a single node. [34]



ML Training with Cloud GPU Shortages: Is Cross-Region the Answer? EuroMLSys ’24, April 22, 2024, Athens, Greece

Traffic Cost/GB Latency Bandwdith
Between ($) (ms) (GB/sec)

Same AZ (US) Free <1 1.45
Diff. AZ, same region (US) 0.01 0.9 1.42
Diff. regions (US) 0.02 31 0.63
Diff. continents (US/EU) 0.05 102 0.18

Table 1. Cost in February 2024, network latency and band-
width for a2-highgpu-1g machines. We used NCCL [12]
to measure network bandwidth and iperf3 [8] to measure
network latency. The cost per GB can reach up to 0.16$ [4]

These parallelism types can be used independently or to-
gether. Multiple works focus on finding the optimal com-
bination and degree of each parallelism type, either using
2D parallelism, i.e. a combination of data and pipeline paral-
lelism [15] or 3D parallelism [27, 36]. While we focus on 2D
parallelism, our findings also apply to 3D parallelism.

2.2 GPUs in the public cloud
Cloud providers [3, 7, 10] offer VMs across different availabil-
ity zones, regions, and continents, at (potentially) different
prices. This price difference can reach up to 3.9×, depending
on the availability zone and the chosen provider (see Figure
3). Systems like SkyPilot [41] search the cloud providers’
landscape for the most cost-effective VM that meets user-
specific requirements. However, VM availability is not guar-
anteed, as shown in Figure 1, especially for transient (spot)
VMs offered at 60-90% lower prices than on-demand VMs [6]
but experiencing high preemption rates [14, 38].
The difference in GPU prices across cloud regions, and

the scarcity of GPUs, motivate the usage of GPUs across any
cloud region. However, there are two main limitations. First,
when crossing cloud availability zones, the network band-
width decreases, as shown in Table 1. The network band-
width across VMs in different regions can be up to 8.05×
lower than within the same zone. Second, cloud providers
charge for data exchange between VMs in different availabil-
ity zones and regions, with the cost per GB varying from
0.01$ to 0.05$ in our examined scenarios. Since distributed
ML training involves across-worker communication (§2.1),
both the drop in network bandwidth and the data exchange
charges can negatively affect ML training jobs spanning
more than one availability zone or region.

3 Modeling Cross-Region ML Training
Performance and Cost

To analyze the potential benefits and challenges associated
with cross-region ML training, we explore two key questions.
First, when does it make sense to use cloud resources across
zones or regions to train ML models? Second, how should
ML model training jobs be partitioned and parallelized to
minimize cross-region communication overheads?

Parameter Description

𝑚𝑏𝑠,𝑔𝑏𝑠 Microbatch size, Global batch size
𝑡𝑓 ,𝑡𝑏 ,𝑡𝑢 Time for forward, backward pass and update

𝑔𝑎 Number of Gradient accumulation steps
𝑀 Model size
𝐴𝑐𝑡𝑖 Activation size of Layer 𝑖
𝐺𝑟𝑎𝑑𝑖 Gradient size of Layer 𝑖

Table 2. Profiling information required for simulations

Parameter Description

𝑛𝑢𝑚_𝑣𝑚𝑖 Number of VMs in zone 𝑖
𝑐𝑜𝑠𝑡𝑖 Cost of VM (of a specific type) in zone 𝑖
𝑐𝑖,𝑗 Cost of exchanging 1 GB between 2 VMs in zones 𝑖 and 𝑗

Table 3. Cloud-specific parameters

To answer these questions, wemodel ML training through-
put and cost by taking into account the computation and
communication characteristics of ML workloads and paral-
lelization strategies and the characteristics of cloud deploy-
ments. Our methodology consists of two phases: profiling
(§3.1) and simulations (§3.2). During profiling, we collect
measurements for the different training phases and cloud
characteristics. In the simulation phase, we model the time
required for a training iteration. Based on this information,
we estimate training throughput and cost.

3.1 Profiling
For a given model and GPU type, we collect measurements
for its forward, backward, and update phase, by running a
few iterations in the specific GPU type. For LLMs with repet-
itive layer structures (e.g. the transformer layer [16]), it is
enough to profile this layer only once. Thus, we can profile
large models (such as OPT-30) on 1 GPU. Apart from timing
measurements, we also get the number of parameters for
the model, the activation size of each layer, the microbatch
size per GPU, and the global batch size used. Table 2 sum-
marizes the required information for each model. Finally,
we measure the inter-VM network bandwidth for each use
case and collect the cost per VM, and data exchange (see
Table 3). To measure the inter-VM network bandwidth we
used the sendrecv benchmark from the NCCL test suite [11]
with a2-highgpu-1g VMs. As the bandwidth is dependent
on the amount of data being transferred, we repeated the
measurements for varying data sizes ranging from 64KB to
2GB. Next, we fit a sigmoid function on our measurements
that our simulator uses to extrapolate the bandwidth for a
given data size.

3.2 Throughput and cost simulations
Running in large-scale clusters to evaluate each possible sce-
nario would be prohibitively expensive. Therefore, we build
a simulator to model the training throughput (iterations/sec)



EuroMLSys ’24, April 22, 2024, Athens, Greece Foteini Strati, Paul Elvinger, Tolga Kerimoglu, and Ana Klimovic

and cost (USD/iteration) based on our profiling information.
We now describe the basic principles of our simulator design.

3.2.1 Throughput estimation. Training throughput de-
pends on per-GPU computation and communication patterns
across GPUs, which depend on parallelism type. For instance,
as described in section 2.1, data parallelism includes an all-
reduce step among all workers at the end of each iteration.
On the other hand, with pipeline parallelism, gradients and
activations are exchanged among adjacent pipeline stages.

Data Parallelism:We start by computing the time per it-
eration, by partitioning it into 2 phases, computation (𝑡𝑐𝑜𝑚𝑝 ),
and communication (𝑡𝑐𝑜𝑚𝑚). The computation time is:

𝑡𝑐𝑜𝑚𝑝 = (𝑡𝑓 + 𝑡𝑏) ∗ 𝑔𝑎 + 𝑡𝑢

where the number of gradient accumulation steps is calcu-
lated by 𝑔𝑎 =

𝑔𝑏𝑠

𝑁 ·𝑚𝑏𝑠
with 𝑁 being the number of workers.

We follow ring-based All-Reduce for estimating the com-
munication time [25, 32]. Assuming a model of𝑀 GB, each
worker 𝑖 will transmit 2· (𝑁−1) ·𝑀

𝑁
GB to worker (𝑖 + 1)%𝑁 .

Since workers can exchange data in parallel to each other,
the time for All-Reduce will be bottlenecked by the slowest
network bandwidth 𝑏𝑚𝑖𝑛 between any two workers.

Thus, the communication time will be:

𝑡𝑐𝑜𝑚𝑚 = 2 · (𝑁 − 1) · 𝑀

𝑁 · 𝑏𝑚𝑖𝑛

Frameworks such as PyTorch [31] overlap gradient ex-
change with gradient computation. In the case of multiple
gradient accumulation steps, the gradient exchange is over-
lapped with the backward pass at the final step. In the ideal
case, where all GPUs are available in the same zone, the
time for one training iteration with overlapping gradient
exchange will be:

𝑇𝑖 = (𝑡𝑓 + 𝑡𝑏) · (𝑔𝑎 − 1)

+𝑚𝑎𝑥 ((𝑡𝑓 + 𝑡𝑏), 2 · (𝑁 − 1) · 𝑀

𝑁 · 𝑏 ) + 𝑡𝑢
(1)

Assuming 𝜆 · 𝑁 GPUs are available (𝜆 < 1) we have:

𝑇𝜆 = (𝑡𝑓 + 𝑡𝑏) · (
𝑔𝑎

𝜆
− 1)

+𝑚𝑎𝑥 ((𝑡𝑓 + 𝑡𝑏), 2 · (𝜆 · 𝑁 − 1) · 𝑀

𝑁 · 𝜆 · 𝑏 ) + 𝑡𝑢

(2)

If we leverage GPUs from different regions, and the mini-
mum network bandwidth is 𝑏𝑚𝑖𝑛 , one training iteration is:

𝑇𝑗 = (𝑡𝑓 + 𝑡𝑏) · (𝑔𝑎 − 1)

+𝑚𝑎𝑥 ((𝑡𝑓 + 𝑡𝑏), 2 · (𝑁 − 1) · 𝑀

𝑁 · 𝑏𝑚𝑖𝑛

) + 𝑡𝑢
(3)

We are interested in the case where 𝑇𝑗 < 𝑇𝜆 . Formulas (2)
and (3) have a𝑚𝑎𝑥 term of 2 factors, resulting in 4 possible
scenarios for 𝑇𝑗 < 𝑇𝜆 . We consider the following 2 scenarios
(as the rest can be straightforwardly handled):

Scenario 1:

𝑇𝑗 < 𝑇𝜆 ⇒ (𝑡𝑓 + 𝑡𝑏) · (𝑔𝑎 − 1) + 2 · (𝑁 − 1) · 𝑀

𝑁 · 𝑏𝑚𝑖𝑛

+ 𝑡𝑢

< (𝑡𝑓 + 𝑡𝑏) · (
𝑔𝑎

𝜆
− 1) + 2 · (𝜆 · 𝑁 − 1) · 𝑀

𝑁 · 𝜆 · 𝑏 + 𝑡𝑢

Scenario 2:

𝑇𝑗 < 𝑇𝜆 ⇒ (𝑡𝑓 + 𝑡𝑏) · (𝑔𝑎 − 1) + 2 · (𝑁 − 1) · 𝑀

𝑁 · 𝑏𝑚𝑖𝑛

+ 𝑡𝑢

< (𝑡𝑓 + 𝑡𝑏) · (
𝑔𝑎

𝜆
− 1) + 𝑡𝑓 + 𝑡𝑏 + 𝑡𝑢

We omit the intermediate calculations for brevity. Scenario
(1) and (2) result in formulas 4 and 5 respectively.

𝑏𝑚𝑖𝑛 =
1

𝑡𝑓 𝑏

𝑀
· 𝐻 +𝐺

(4)

𝑏𝑚𝑖𝑛 =
𝑀

𝑡𝑓 𝑏
·𝐶 (5)

where 𝑡𝑓 𝑏 = 𝑡𝑓 + 𝑡𝑏 , and 𝐶,𝐻,𝐺 are constants depending
on 𝜆, 𝑁 ,𝑏, 𝑔𝑎.

Equations 4 and 5 provide a lower bound for the network
bandwidth, which serves as a criterion for distributing train-
ing across zones or regions. The key factors that determine
whether training with more GPUs but with reduced band-
width (across zones/regions) is more beneficial than training
with fewer GPUs (within one zone) are the amount of per-
GPU compute time per iteration (𝑡𝑓 𝑏 ) and the size of the
model (𝑀). For instance, training can accommodate lower
bandwidths when compute time per iteration is large. On
the other hand, a larger model size exacerbates the impact
of model synchronization, causing training throughput to
significantly degrade with lower bandwidth.
Pipeline Parallelism: We use AMP’s [27] formula to

model the training of large models with pipeline parallelism.
We define 𝑃 to be the number of pipeline stages. During the
forward pass, stage 𝑗 sends the activation of its last layer
to its successor stage 𝑗 + 1, while during the backward pass
it receives the gradient of 𝑗 + 1’s first layer. Note that the
last stage does not forward any activations and similarly the
first stage does not forward any gradients. Let 𝑡𝑖

𝑓
and 𝑡𝑖

𝑏
be

the time it takes to calculate the activations and gradients at
stage 𝑖 . We define 𝑡𝑖𝑐𝑜𝑚𝑝 = 𝑡𝑖

𝑓
+ 𝑡𝑖

𝑏
to be the computation time

at stage 𝑖 . Next we define the time spent on communication
𝑡𝑖𝑐𝑜𝑚𝑚 between stage 𝑖 and 𝑖 + 1 to be the time it takes to
send the activations and gradients between the two stages.
When 𝑏𝑖,𝑖+1 is the bandwidth between stage 𝑖 and 𝑖 + 1 for
𝑖 ∈ [0, 𝑃 − 2], we get that 𝑡𝑖𝑐𝑜𝑚𝑚 =

𝐴𝑐𝑡𝑖+𝐺𝑟𝑎𝑑𝑖+1
𝑏𝑖,𝑖+1

. As a last
step, let us substitute the straggler term in AMP’s formula
as follows (𝑛𝑚 is the number of microbatches processed at
each iteration)

𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟 = (𝑛𝑚 − 1) · max
0≤𝑖≤𝑃−1
0≤ 𝑗≤𝑃−2

(𝑡𝑖𝑐𝑜𝑚𝑝 , 𝑡
𝑗
𝑐𝑜𝑚𝑚)



ML Training with Cloud GPU Shortages: Is Cross-Region the Answer? EuroMLSys ’24, April 22, 2024, Athens, Greece

Model Number of parameters Dataset Global batch size Optimizer Source
OPT-1.3B,6.7B,30B 1.3B,6.7B,30B WikiText 1M,2M,4M tokens Adam [43]

VGG-19-BN 144M ImageNet 8192 SGD [14, 35]
Vit-H-14 632 M ImageNet 4096 Adam [17]

ConvNext-Large 197M ImageNet 4096 Adam [29]
Table 4. Examined models. We selected the global batch size and optimizer used in the respective paper.

Using the above defined quantities and the collected in-
formation from tables 2 and 3, we extend AMP’s formula as
follows:

𝑡𝑝𝑝 = 𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟 +
𝑃−1∑︁
𝑖=0

𝑡𝑖𝑐𝑜𝑚𝑝 +
𝑃−2∑︁
𝑖=0

𝑡𝑖𝑐𝑜𝑚𝑚 + 𝑡𝑢

= 𝑠𝑡𝑟𝑎𝑔𝑔𝑙𝑒𝑟 +
𝑃−1∑︁
𝑖=0

(𝑡𝑖
𝑓
+ 𝑡𝑖

𝑏
) +

𝑃−2∑︁
𝑖=0

𝐴𝑐𝑡𝑖 +𝐺𝑟𝑎𝑑𝑖+1
𝑏𝑖,𝑖+1

+ 𝑡𝑢

(6)

The formula assumes that communication can be over-
lapped with computation, as in multiple works [5, 20, 27].

Data + Pipeline Parallelism:When both data and pipeline
parallelism are used, the training throughput depends on the
number of pipeline replicas 𝐷 , and the number of stages per
pipeline 𝑃 [15, 27, 36]. Assume we have 𝐷 pipelines, each
with depth 𝑃 . We use equation 6 to estimate the iteration
time of each pipeline. At the end of each iteration, the data
parallel replicas need to synchronize their updates (using
All-Reduce). Assuming balanced partitioning of the model
at each stage, the time for replica synchronization will be:
𝑡𝑠𝑦𝑛𝑐 = 2 · (𝐷 − 1) · 𝑀

𝐷 ·𝑃 ·𝑏𝑚𝑖𝑛
. Thus, the iteration time will be

𝑡𝑖𝑡𝑒𝑟 = 𝑡𝑝𝑝 + 𝑡𝑠𝑦𝑛𝑐 .
We analyze two possible ways of splitting a 𝐷 × 𝑃 grid:

(1) on the data parallel dimension 𝐷 and (2) on the pipeline
parallel dimension 𝑃 . In the first case, sending activations and
gradients between pipeline stages happens within the same
availability zone. In the second case, the AllReduce operation
to synchronize model weights is done across workers of the
same availability zone.

3.2.2 Cost estimation. To get the cost per iteration, we
again divide it into two parts: computation cost (𝐶𝑐𝑜𝑚𝑝 ), and
communication cost (𝐶𝑐𝑜𝑚𝑚). The computation cost will be
(regardless of the type of parallelism):

𝐶𝑐𝑜𝑚𝑝 = 𝑡𝑖𝑡𝑒𝑟 ∗
∑︁
zone 𝑖

(𝑛𝑢𝑚_𝑣𝑚𝑖 · 𝑐𝑜𝑠𝑡𝑖 )

The communication cost is 𝐶𝑐𝑜𝑚𝑚 =
∑
𝑑𝑎𝑡𝑎𝑖 𝑗 · 𝑐𝑖 𝑗 , where

𝑑𝑎𝑡𝑎𝑖 𝑗 is the amount of data exchanged between VMs 𝑖 and
𝑗 . Note that both 𝑑𝑎𝑡𝑎𝑖 𝑗 and 𝑐𝑖 𝑗 can be zero for a pair of VMs.
Data Parallelism: With a ring-based All-reduce, each

worker 𝑖 will send data to the (𝑖 + 1)%𝑁 -th worker. The

amount of data exchanged for the whole All-Reduce opera-
tion will be:

𝑑𝑎𝑡𝑎𝑖 𝑗
0≤𝑖≤𝑁−1

=

{
2· (𝑁−1) ·𝑀

𝑁
, if 𝑗 = (𝑖 + 1)%𝑁

0, otherwise
(7)

Pipeline Parallelism: During forward pass, each worker
𝑖 will send activations of the last layer to worker 𝑖 + 1, and
during backward pass, will receive gradients fromworker 𝑖+1
for 𝑖 ∈ [0, 𝑃 − 2]. Thus, for one training iteration, assuming
that 𝑛𝑚 microbatches are being processed, we have:

𝑑𝑎𝑡𝑎𝑖 𝑗
0≤𝑖≤𝑃−2

=

{
𝑛𝑚 · (𝐴𝑐𝑡𝑖 +𝐺𝑟𝑎𝑑 𝑗 ), if 𝑗 = 𝑖 + 1
0, otherwise

(8)

Data + Pipeline Parallelism: Assuming each pipeline
replica spans an entire row, we assign each worker a rank
in row-major order. Worker 𝑖 will exchange data with its
adjacent workers both during forward and backward passes
and during gradient synchronization:

𝑑𝑎𝑡𝑎𝑖 𝑗
0≤𝑖≤𝐷𝑃−1

=


𝑛𝑚 · (𝐴𝑐𝑡𝑖 +𝐺𝑟𝑎𝑑 𝑗 ), if 𝑗 = 𝑖 + 1, and

𝑖 ∉ {𝑘𝑃 − 1 | 1 ≤ 𝑘 ≤ 𝐷}
2· (𝐷−1) ·𝑀

𝑃

𝐷
, if 𝑗 = (𝑖 + 𝑃)%(𝐷 · 𝑃)

0, otherwise
(9)

4 Evaluation
In this section, we evaluate the impact of across-zone or
region training on various ML models.

4.1 Setup
MLworkloads.Table 4 shows themodels we profiled, which
range from 144M to 30B parameters, from computer vision
to natural language processing domains. We get the global
batch sizes from the papers that propose these models. We
used PyTorch 2.1 and DeepSpeed (where pipeline parallelism
is used) for profiling. When using a combination of data and
pipeline parallelism, we select the partitioning strategy that
leads to the highest training throughput [27].
Cloud setup. We profiled our models and got network

bandwidth information using a2-highgpu-1g VMs with 1
40GB-A100 GPU attached. We run experiments across 4 dif-
ferent availability zones (us-central1-b, us-west1-b, us-east1-b,
and europe-west4-a) in GCP. We fix the number of GPUs in
each experiment and compare performance and cost when
the GPUs are spread across 1, 2, and 3 zones.



EuroMLSys ’24, April 22, 2024, Athens, Greece Foteini Strati, Paul Elvinger, Tolga Kerimoglu, and Ana Klimovic

We validated our methodology by comparing the esti-
mated throughput with the actual throughput of various
parallelization strategies across different zones and regions.
Our estimations are within 10% of the actual throughput.

4.2 Training with Data Parallelism only
Figure 4 plots estimated training throughput and cost for the
VGG, ConvNext, and VIT models on 32 A100 GPUs. Spread-
ing training in two zones in the same region always leads to
higher throughput compared to 75% or 50% of the requested
machines in one availability zone. The network bandwidth
across zones is within 95% of the network bandwidth within
one zone, so training can still maintain high throughput.

When using two or more regions in the US, the impact on
training throughput depends on model characteristics. The
bandwidth is within 44% of the intra-zone network band-
width. Distributing training across regions leads to higher
throughput for ConvNext and VIT, but not for VGG19, com-
pared to using 50% of GPUs in a single zone. According
to Formulas 4 and 5, VIT and ConvNext exhibit higher 𝑡𝑓 𝑏

𝑀

compared to VGG (i.e. compute-to-communication ratio),
resulting in a lower minimum bound for network bandwidth
and thus benefiting from spreading across regions. Intercon-
tinental training (i.e. US-EU) has detrimental effects on the
training throughput of all models. The network bandwidth
is within 14% of the intra-zone bandwidth, far lower than
the acceptable lowest bound of any of the models. When
crossing the region or continent boundaries, all-reduce is
bottlenecked by the lowest network bandwidth link, thus
there is no difference in throughput when using more than
two regions.
Figure 4b shows the cost for 100 iterations, divided into

VM rental cost, and communication cost. The VM cost in-
creases as we go from a single zone to multiple zones, re-
gions, and continents, due to the gradual decrease in training
throughput. As expected also from Table 1, the cost for data
exchange is very high for inter-continental setups, due to the
high charges per GB. When using more regions, the cost for
data exchange also increases, since more links are charged,
as shown from Figure 4b, where the 3-region setups incur
higher costs than the respective 2-region cases.

4.3 Training with Pipeline Parallelism only
Figure 5 includes our estimations for OPT-30B on a cluster of
25 A100 GPUs. We select the minimum number of machines
to fit the model, thus we exclude cases where we use only
50% or 75% of machines in a single zone, that would lead
to out-of-memory errors. Training throughput remains al-
most unaffected, regardless of whether we split across zones
within the same region, across regions within the same con-
tinent, or even across continents.
As explained in section 3, when employing pipeline par-

allelism, workers at adjacent stages exchange activations

(a) Training Throughput

(b) Cost for 100 iterations. Bold bars stand for VM rental cost, faint bars
stand for communication cost.

Figure 4. Simulations with data parallelism. We use local
batch size (per GPU) 128 for VGG19, 64 for ConvNext-Large,
and 32 for VIT-H-14.

(and gradients) of the last (or first) layer of each stage. Even
though the examined models are at the scale of GB, the sizes
of per-layer activations are within 10s of MB per sample.
Consequently, the time to exchange the activations and gra-
dients is small, even under a tighter across-region network
bandwidth and can be efficiently overlapped by the com-
pute time required for forward and backward passes per
microbatch.
To analyze cost, we assume that the 𝑃 pipeline stages

are spread across 𝑁 zones. Inter-stage communication thus
traverses zone boundaries at 𝑁 − 1 points in the pipeline.
This is a valid assumption, as users can control the rank
assignment of workers. The VM rental cost remains very
similar across all configurations, differing by at most 1%. This
is due to the nearly identical rental costs in the respective
regions and the fact that the distribution of the pipeline
across different locations has negligible impact on training
throughput, and consequently training time. The main cause
of diverging training costs across different configurations
is data movement cost. Spreading training across zones in
the same region has minimal effects (up to 4%) on training
costs. Due to higher charges per GB movement, the training
cost across regions and continents is 25% and 42% higher



ML Training with Cloud GPU Shortages: Is Cross-Region the Answer? EuroMLSys ’24, April 22, 2024, Athens, Greece

(a) Training Throughput

(b) Cost for 100 iterations. Bold bars show VM rental cost, faint bars show
data transfer costs.

Figure 5. Simulations running OPT-30B on a cluster of 25
A100 GPUs with Pipeline Parallelism. The simulation sets
𝑃 = 25 stages, assigns 2 layers per stage and uses a micro-
batch size of 1.

than single-zone respectively. Notably, the order of stage
assignment affects costs. Comparing the US-US-EU and US-
EU-US cases in Figure 5b, we observe that the US-EU-US
setup leads to higher costs. Since each stage exchanges data
with its adjacent stage, and across-region data exchange
costs are lower than across-continents costs (see Table 1), it
is important to minimize the number of crossing continent
boundaries.

4.4 Training with 2D Parallelism
Figure 6 presents our training estimations for OPT-6.7B on a
cluster of 85 A100 GPUs. We aim to determine which parti-
tioning strategy (data or pipeline parallel) is more beneficial.
When distributing training in two zones of the same region,
both strategies show similar throughput to the single-zone
throughput. When using GPUs from different regions and
continents, splitting training on the pipeline parallel dimen-
sion is more beneficial. This aligns with our observations
in sections 4.2 and 4.3. In section 4.2 we noted a significant
performance drop in data-parallel throughput, especially in
the EU-US setup, due to all-reduce overheads. On the other
hand, the effects of lower network bandwidth can be bet-
ter hidden with pipeline parallelism, as shown section 4.3.

(a) Training Throughput

(b) Cost for 100 iterations. Bold bars stand for VM rental cost, faint bars
stand for communication cost.

Figure 6. Simulations for running OPT-6.7B on a cluster of
85 A100 GPUs with 2D Parallelism. We use 𝐷 = 5, 𝑃 = 17,
assign 2 layers per stage and use a microbatch size of 1.

We make similar observations for training cost: partitioning
along the data parallel dimension results in higher costs,
both due to lower training throughput and data exchange
charges. In summary, when training with 2D parallelism,
keeping all data parallel communication within one region
leads to higher throughput and lower cost.

5 Discussion
MLmodel and hardware trends: A question that might
arise from our study, is how temporary this increased GPU
demand, and resulting GPU scarcity in the public cloud is.
The high GPU demand is a result of the great advances in
the ML field over the recent years. Figure 7 plots the LLM
size (using fp16) and the maximum memory capacity of
NVIDIA GPUs released from 2018 to 2023. Over 5 years, we
observe that, while the model size has experienced a 4400×
increase, the increase in the available per-GPU memory is
only 6×. Consequently, the number of GPUs required for
training and serving these models is drastically increasing
over time, resulting in GPU scarcity that we and others have
observed [41]. Given these trends, we believe that the de-
mand for accelerators will continue to increase, intensifying
the GPU scarcity in the public cloud. Opportunistically allo-
cating resources across multiple cloud zones will facilitate



EuroMLSys ’24, April 22, 2024, Athens, Greece Foteini Strati, Paul Elvinger, Tolga Kerimoglu, and Ana Klimovic

Figure 7. The evolution of LLM size and GPU memory from
2018 to 2023. Data from [1, 9, 40].

the training of such large models. We hope our analysis will
help guide optimal resource allocation.

Availability of spot instances: In this paper we focused
on on-demand VMs. Another type of VMs available in the
public cloud is spot or preemptble VMs, offered at 60-90% of
the price of on-demand VMs [6]. However, spot instances can
be preempted at any time depending on resource demand
and availability. Recent studies indicate that GPU-equipped
VMs experience high rates of preemptions [14, 26, 38, 41].
This scarcity and high preemption rates may lead users to
spread distributed ML training across multiple zones. Our
analysis aims to provide insights on when and how to allo-
cate spot instances across cloud zones (since the computation
and communication patterns remain the same as with on-
demand machines). An additional factor that needs to be
considered is the preemption rate, which can severely affect
the training iteration time, as reconfiguration is required
upon a preemption event [15, 18, 23, 38], which can take
a significant amount of time [15, 18, 23]. Preemption rates
tend to vary across cloud zones [38]. We plan to include
preemption rates in our analysis, to help users make more
informed decisions based on the expected system behavior.

6 Related Work
Geodistributed ML training: Frameworks facilitating geo-
distributed ML training are emerging [37, 42]. Yuan et al [42]
study geo-distributed training of foundation models across
low-bandwidth networks and heterogeneous devices, ana-
lyzing various placement policies. However, they do not con-
sider the monetary cost of exchanging data, which is a funda-
mental decision factor, as highlighted in our work. Some of
these frameworks propose asynchronous training [21, 28, 44],
or quantization and compression to reduce the amount of ex-
changed data [13, 19, 24, 39] in geo-distributed setups. Since
synchronous training offers stronger convergence guaran-
tees, it is most widely used [15, 30], and is the main focus of
our work.

Towards automating resource allocation in the cloud
A couple of works automate resource allocation in the cloud,
considering prices and resource availability. DeepSpot [26]
monitors GPU prices and recommends optimal regions for

training. SkyPilot [41] is a cloud broker that distributes tasks
across cloud providers and regions. However, both tools
constrain training to a single availability zone. As highlighted
in ourwork, leveraging GPUs from various zones and regions
is essential for efficient distributed training at scale.

Study of across-region training in the cloud Erben et
al [22] investigate geo-distributed ML training in the pub-
lic cloud. They focus on small models, trained with data
parallelism. They introduce the granularity metric, defined
as the ratio of computation to communication, and show
that models with higher granularity are more suitable for
geo-distributed training. However, they do not provide a
methodology on how to calculate granularity for a model.
In contrast, we provide analytical models, that, based on
basic profiling information can accurately estimate train-
ing throughput and cost. Additionally, our analysis includes
large models, trained with pipeline parallelism, which ex-
hibits different communication patterns compared to data
parallelism.

7 Conclusion
We studied distributed ML training across various cloud
regions, to address GPU shortages. We proposed an analyt-
ical model, that, based on model and cloud characteristics,
can accurately estimate training throughput and cost under
various setups. We analyzed ML models of various scales
and different parallelization strategies. We find that pipeline
parallel training is more tolerant of geo-distributed train-
ing than data-parallel training. This determines how to opti-
mally allocate resources in large-model training setups using
a combination of data and pipeline parallelism. We plan to
implement a scheduler to optimize resource allocation across
cloud regions based on our findings.

Acknowledgement
We thank our anonymous reviewers for their valuable feed-
back. We thank Ixeia Sánchez Périz for her help throughout
the project. Foteini Strati is supported by the Swiss National
Science Foundation (Project Number 200021_204620).

References
[1] 2023. Train and deploy large language models on Amazon Sage-

Maker. https://d1.awsstatic.com/events/Summits/reinvent2022/
AIM405_Train-and-deploy-large-language-models-on-Amazon-
SageMaker.pdf.

[2] 2024. All networking pricing. https://cloud.google.com/vpc/network-
pricing.

[3] 2024. Amazon Web Service. https://aws.amazon.com/.
[4] 2024. Azure Bandwidth Pricing. https://azure.microsoft.com/en-

us/pricing/details/bandwidth/#pricing.
[5] 2024. DeepSpeed Pipeline Parallelism. https://www.deepspeed.ai/

tutorials/pipeline/.
[6] 2024. GCP Spot VMs. https://cloud.google.com/spot-vms.
[7] 2024. Google Cloud Platform. https://cloud.google.com/?hl=el.
[8] 2024. iperf3: A TCP, UDP, and SCTP network bandwidth measurement

tool. https://github.com/esnet/iperf.

https://d1.awsstatic.com/events/Summits/reinvent2022/AIM405_Train-and-deploy-large-language-models-on-Amazon-SageMaker.pdf
https://d1.awsstatic.com/events/Summits/reinvent2022/AIM405_Train-and-deploy-large-language-models-on-Amazon-SageMaker.pdf
https://d1.awsstatic.com/events/Summits/reinvent2022/AIM405_Train-and-deploy-large-language-models-on-Amazon-SageMaker.pdf
https://cloud.google.com/vpc/network-pricing
https://cloud.google.com/vpc/network-pricing
https://aws.amazon.com/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/##pricing
https://azure.microsoft.com/en-us/pricing/details/bandwidth/##pricing
https://www.deepspeed.ai/tutorials/pipeline/
https://www.deepspeed.ai/tutorials/pipeline/
https://cloud.google.com/spot-vms
https://cloud.google.com/?hl=el
https://github.com/esnet/iperf


ML Training with Cloud GPU Shortages: Is Cross-Region the Answer? EuroMLSys ’24, April 22, 2024, Athens, Greece

[9] 2024. List of Nvidia graphics processing units. https://en.wikipedia.
org/wiki/List_of_Nvidia_graphics_processing_units.

[10] 2024. Microsoft Azure. https://azure.microsoft.com/en-us.
[11] 2024. NCCL Tests. https://github.com/NVIDIA/nccl-tests.
[12] 2024. NVIDIA Collective Communications Library (NCCL). https:

//developer.nvidia.com/nccl.
[13] Syeda Nahida Akter and Muhammad Abdullah Adnan. 2020. Weight-

Grad: Geo-Distributed Data Analysis Using Quantization for Faster
Convergence and Better Accuracy. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Min-
ing (Virtual Event, CA, USA) (KDD ’20). Association for Computing
Machinery, New York, NY, USA, 546–556. https://doi.org/10.1145/
3394486.3403097

[14] Joel André, Foteini Strati, and Ana Klimovic. 2022. Exploring learning
rate scaling rules for distributed ML training on transient resources. In
Proceedings of the 3rd International Workshop on Distributed Machine
Learning (Rome, Italy) (DistributedML ’22). Association for Computing
Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3565010.
3569067

[15] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ram-
jee, and Nipun Kwatra. 2022. Varuna: scalable, low-cost training of
massive deep learning models. In Proceedings of the Seventeenth Euro-
pean Conference on Computer Systems (Rennes, France) (EuroSys ’22).
Association for Computing Machinery, New York, NY, USA, 472–487.
https://doi.org/10.1145/3492321.3519584

[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot
Learners. arXiv:2005.14165 [cs.CL]

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. 2021. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. In International Conference on Learning
Representations. https://openreview.net/forum?id=YicbFdNTTy

[18] Jiangfei Duan, Ziang Song, Xupeng Miao, Xiaoli Xi, Dahua Lin,
Harry Xu, Minjia Zhang, and Zhihao Jia. 2024. Parcae: Proac-
tive, Liveput-Optimized DNN Training on Preemptible Instances.
arXiv:2403.14097 [cs.DC]

[19] Chenyu Fan, Xiaoning Zhang, Yangming Zhao, Yutao Liu, and Shui
Yu. 2023. Self-Adaptive Gradient Quantization for Geo-Distributed
Machine Learning Over Heterogeneous and Dynamic Networks. IEEE
Transactions on Cloud Computing 11, 4 (2023), 3483–3496. https:
//doi.org/10.1109/TCC.2023.3292525

[20] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen
Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong
Diao, Xiaoyong Liu, and Wei Lin. 2021. DAPPLE: a pipelined data
parallel approach for training large models. In Proceedings of the
26th ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (Virtual Event, Republic of Korea) (PPoPP ’21). As-
sociation for Computing Machinery, New York, NY, USA, 431–445.
https://doi.org/10.1145/3437801.3441593

[21] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis,
Gregory R. Ganger, Phillip B. Gibbons, and Onur Mutlu. 2017. Gaia:
Geo-Distributed Machine Learning Approaching LAN Speeds. In 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). USENIX Association, Boston, MA, 629–647. https://www.
usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh

[22] Alexander Isenko, Ruben Mayer, and Hans-arno Jacobsen. 2023. How
Can We Train Deep Learning Models Across Clouds and Continents?
An Experimental Study.

[23] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and Mosharaf Chowd-
hury. 2023. Oobleck: Resilient Distributed Training of Large Models
Using Pipeline Templates. In Proceedings of the 29th Symposium on
Operating Systems Principles (SOSP ’23). ACM. https://doi.org/10.1145/
3600006.3613152

[24] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. 2018. SketchML:
Accelerating Distributed Machine Learning with Data Sketches. In
Proceedings of the 2018 International Conference on Management of
Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing
Machinery, New York, NY, USA, 1269–1284. https://doi.org/10.1145/
3183713.3196894

[25] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. 2020. A Unified Architecture for Accelerating Distributed
DNN Training in Heterogeneous GPU/CPU Clusters. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 463–479. https://www.usenix.org/conference/
osdi20/presentation/jiang

[26] Kyungyong Lee and Myungjun Son. 2017. DeepSpotCloud: Leveraging
Cross-Region GPU Spot Instances for Deep Learning. In 2017 IEEE
10th International Conference on Cloud Computing (CLOUD). 98–105.
https://doi.org/10.1109/CLOUD.2017.21

[27] Dacheng Li, Hongyi Wang, Eric Xing, and Hao Zhang. 2022. AMP:
Automatically Finding Model Parallel Strategies with Heterogeneity
Awareness. arXiv:2210.07297 [cs.LG]

[28] Shigang Li, Tal Ben-Nun, Giorgi Nadiradze, Salvatore Di Girolamo,
Nikoli Dryden, Dan Alistarh, and Torsten Hoefler. 2021. Break-
ing (Global) Barriers in Parallel Stochastic Optimization With Wait-
Avoiding Group Averaging. IEEE Transactions on Parallel and Dis-
tributed Systems 32, 7 (2021), 1725–1739. https://doi.org/10.1109/TPDS.
2020.3040606

[29] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer,
Trevor Darrell, and Saining Xie. 2022. A ConvNet for the 2020s.
arXiv:2201.03545 [cs.CV]

[30] Andrew Or, Haoyu Zhang, and Michael None Freedman. 2022.
VirtualFlow: Decoupling Deep Learning Models from the Under-
lying Hardware. In Proceedings of Machine Learning and Systems
2022, MLSys 2022, Santa Clara, CA, USA, August 29 - Septem-
ber 1, 2022, Diana Marculescu, Yuejie Chi, and Carole-Jean Wu
(Eds.). mlsys.org. https://proceedings.mlsys.org/paper/2022/hash/
2723d092b63885e0d7c260cc007e8b9d-Abstract.html

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Py-
Torch: An Imperative Style, High-Performance Deep Learning Library.
arXiv:1912.01703 [cs.LG]

[32] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce
algorithms for clusters of workstations. J. Parallel and Distrib. Comput.
69, 2 (2009), 117–124. https://doi.org/10.1016/j.jpdc.2008.09.002

[33] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports,
and Peter Richtarik. 2021. Scaling Distributed Machine Learning with
In-Network Aggregation. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). USENIX Association,
785–808. https://www.usenix.org/conference/nsdi21/presentation/
sapio

[34] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2020. Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism.
arXiv:1909.08053 [cs.CL]

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://azure.microsoft.com/en-us
https://github.com/NVIDIA/nccl-tests
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://doi.org/10.1145/3394486.3403097
https://doi.org/10.1145/3394486.3403097
https://doi.org/10.1145/3565010.3569067
https://doi.org/10.1145/3565010.3569067
https://doi.org/10.1145/3492321.3519584
https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2403.14097
https://doi.org/10.1109/TCC.2023.3292525
https://doi.org/10.1109/TCC.2023.3292525
https://doi.org/10.1145/3437801.3441593
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://doi.org/10.1145/3600006.3613152
https://doi.org/10.1145/3600006.3613152
https://doi.org/10.1145/3183713.3196894
https://doi.org/10.1145/3183713.3196894
https://www.usenix.org/conference/osdi20/presentation/jiang
https://www.usenix.org/conference/osdi20/presentation/jiang
https://doi.org/10.1109/CLOUD.2017.21
https://arxiv.org/abs/2210.07297
https://doi.org/10.1109/TPDS.2020.3040606
https://doi.org/10.1109/TPDS.2020.3040606
https://arxiv.org/abs/2201.03545
https://proceedings.mlsys.org/paper/2022/hash/2723d092b63885e0d7c260cc007e8b9d-Abstract.html
https://proceedings.mlsys.org/paper/2022/hash/2723d092b63885e0d7c260cc007e8b9d-Abstract.html
https://arxiv.org/abs/1912.01703
https://doi.org/10.1016/j.jpdc.2008.09.002
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://arxiv.org/abs/1909.08053


EuroMLSys ’24, April 22, 2024, Athens, Greece Foteini Strati, Paul Elvinger, Tolga Kerimoglu, and Ana Klimovic

[35] Karen Simonyan and Andrew Zisserman. 2015. Very Deep
Convolutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556 [cs.CV]

[36] Jakub M Tarnawski, Deepak Narayanan, and Amar Phanishayee. 2021.
Piper: Multidimensional Planner for DNN Parallelization. In Advances
in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran
Associates, Inc., 24829–24840. https://proceedings.neurips.cc/paper_
files/paper/2021/file/d01eeca8b24321cd2fe89dd85b9beb51-Paper.pdf

[37] Learning@home team. 2020. Hivemind: a Library for Decentralized
Deep Learning. https://github.com/learning-at-home/hivemind.

[38] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao
Jia, Minjia Zhang, Ravi Netravali, and Guoqing Harry Xu. 2023. Bam-
boo: Making Preemptible Instances Resilient for Affordable Training of
Large DNNs. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). USENIX Association, Boston, MA, 497–
513. https://www.usenix.org/conference/nsdi23/presentation/thorpe

[39] Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang,
Christopher De Sa, Christopher Re, and Ce Zhang. 2023. CocktailSGD:
fine-tuning foundation models over 500mbps networks. In Proceedings
of the 40th International Conference on Machine Learning (Honolulu,
Hawaii, USA) (ICML’23). JMLR.org, Article 1497, 19 pages.

[40] Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang
Feng, Haoming Jiang, Bing Yin, and Xia Hu. 2023. Harnessing

the Power of LLMs in Practice: A Survey on ChatGPT and Beyond.
arXiv:2304.13712 [cs.CL]

[41] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil
Bhardwaj, Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam
Mittal, Scott Shenker, and Ion Stoica. 2023. SkyPilot: An Intercloud
Broker for Sky Computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, 437–455. https://www.usenix.org/conference/nsdi23/
presentation/yang-zongheng

[42] Binhang Yuan, Yongjun He, Jared Quincy Davis, Tianyi Zhang, Tri
Dao, Beidi Chen, Percy Liang, Christopher Re, and Ce Zhang. 2023.
Decentralized Training of Foundation Models in Heterogeneous Envi-
ronments. arXiv:2206.01288 [cs.DC]

[43] Susan Zhang, Stephen Roller, NamanGoyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria
Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. 2022. OPT: Open Pre-trained Transformer Language
Models. arXiv:2205.01068 [cs.CL]

[44] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2016.
Staleness-aware Async-SGD for Distributed Deep Learning.
arXiv:1511.05950 [cs.LG]

https://arxiv.org/abs/1409.1556
https://proceedings.neurips.cc/paper_files/paper/2021/file/d01eeca8b24321cd2fe89dd85b9beb51-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d01eeca8b24321cd2fe89dd85b9beb51-Paper.pdf
https://github.com/learning-at-home/hivemind
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://arxiv.org/abs/2304.13712
https://www.usenix.org/conference/nsdi23/presentation/yang-zongheng
https://www.usenix.org/conference/nsdi23/presentation/yang-zongheng
https://arxiv.org/abs/2206.01288
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/1511.05950

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Distributed DNN training
	2.2 GPUs in the public cloud

	3 Modeling Cross-Region ML Training Performance and Cost
	3.1 Profiling
	3.2 Throughput and cost simulations

	4 Evaluation
	4.1 Setup
	4.2 Training with Data Parallelism only
	4.3 Training with Pipeline Parallelism only
	4.4 Training with 2D Parallelism

	5 Discussion
	6 Related Work
	7 Conclusion
	References

