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ABSTRACT
Machine learning (ML) is often applied in use cases where 
training data evolves and/or grows over time. Training must 
incorporate data changes for high model quality, however 
this is often challenging and expensive due to large datasets 
and models. In contrast, ML researchers often train and eval-
uate ML models on static datasets or with artificial assump-
tions about data dynamics. This gap between research and 
practice is largely due to (i) the absence of an open-source 
platform that manages dynamic datasets at scale and sup-
ports pluggable policies for when and what data to train on, 
and (ii) the lack of representative open-source benchmarks 
for ML training on dynamic datasets. To address this gap, we 
propose to design a platform that enables ML researchers and 
practitioners to explore training and data selection policies, 
while alleviating the burdens of managing large dynamic 
datasets and orchestrating recurring training jobs. We also 
propose to build an accompanying benchmark suite that 
integrates public dynamic datasets and ML models from a 
variety of representative use cases.
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1 INTRODUCTION
Machine Learning (ML) datasets encountered in real-life 
scenarios are inherently dynamic, i.e., samples get added or 
removed over time. Data is constantly collected via sensors, 
IoT devices, self-driving cars, and satellites [8, 40, 69]. At 
Meta, the training dataset used for recommendation models
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spans exabytes of storage, and its size has doubled in the past
two years [81]. At the same time, social trends and emerging
events cause natural data distribution shifts [38, 71]. Data
may also need to be deleted after a period of time, for example,
due to privacy regulations, such as the GDPR [21].

ML models need to account for the dynamic nature of data.
According to Meta’s studies, training recommendation mod-
els daily results in significantly higher quality than training
weekly [26, 81]. Similarly, transformer models struggle to
keep up with the distribution shifts in real datasets, requiring
frequent updates [38].

Training ML models on dynamic datasets raises two key
questions: when to update an ML model, and what data to
train it on? Naively retraining a model from scratch on the
entire dataset when new data becomes available is prohibi-
tively expensive and slow. The training cost is proportional
to the data volume, which can be in the order of petabytes
or exabytes [22, 81]. Fine-tuning the model on each new ex-
ample as it arrives is also impractical in production, due to
strict, time-consuming deployment checks [29].

The ML community has been exploring these questions by
developing techniques to detect data distribution shifts [40,
58] and find an appropriate subset of data to train on [33,
46, 55, 56]. However, most of these works focus on small-
scale, static datasets such as CIFAR [37], MNIST [39], and
ImageNet [17], while datasets used in production are signifi-
cantly larger and dynamic. Previous works often artificially
split data into tasks, and gradually reveal them to the model
to simulate dynamicity [56]. Unfortunately, these assump-
tions are not always realistic [78], leaving a gap between
research and practice.

We identify two key reasons for the gap between prac-
tical ML use cases and the scenarios typically studied by
researchers. First, there is no end-to-end ML platform built
from the ground up for dynamic datasets. Such a platform
needs to deal with huge amounts of data and metadata, mon-
itor the data ingestion process, and implement and apply
the appropriate data selection algorithm, which often has a
high computational cost. The platform must also be modular
and flexible enough to encompass various use cases with
different policies for when and what to train on. Although
the need for such a platform has been acknowledged by ML
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practitioners [52, 61, 70], and there exist various individual
components for different parts of this process [6, 49, 74],
there is currently no open-source platform that meets all
these requirements. Second, it is difficult to find representa-
tive open-source ML benchmarks with dynamic datasets, as
most companies keep their data private for regulatory and
tradesecret reasons. This causes academic research to evolve
around small-scale, static datasets. In this paper, we outline
our vision on how to address these two problems. We make
the following contributions.
(1) We propose to bring often separated areas of ML research

together by formulating the paradigm of ML training on
dynamic datasets.We discuss how existing researchmaps
onto the two dimensions, when and on what data to train.

(2) We present our vision for an open-source end-to-end plat-
form for ML on dynamic datasets, Modyn, which aims
to enable ML researchers to easily experiment with data
selection and training triggering policies, while abstract-
ing the complexities of large-scale data management and
system orchestration.

(3) To facilitate ML research on practical use cases, we pro-
pose a benchmark suite comprising open-source datasets
that are inherently dynamic and span various application
domains (e.g., recommendation systems, autonomous
driving, NLP). We are in the process of combining these
datasets with publicly available models, and integrating
them in an initial prototype of Modyn to allow for end-
to-end, easy-to-use, representative benchmarks.

This paper presents early-stage work and lays out our
initial ideas on how to address model training on dynamic
datasets. We welcome feedback and contributions from the
community. We aim to stimulate collaboration between in-
dustry and academia to explore diverse challenges that arise
in practical ML use cases, where data is inherently dynamic.

2 BACKGROUND AND MOTIVATION
We define dynamic datasets (Section 2.1) and outline the
challenges they present from a ML theory perspective (Sec-
tion 2.2) and system perspective (Section 2.3). The gap in
system support for managing dynamic data in today’s ML
ecosystemmotivates us to propose a new platform and bench-
mark suite for ML on dynamic datasets.

2.1 Dynamic Datasets
We define dynamic datasets as datasets that change over time.
Changes may consist of adding new data points (e.g., a sensor
data source continually collects new data), removing old
data points (e.g., due to privacy regulations), or editing data
points (e.g., by applying data cleaning techniques). In real-
world applications of ML, training data is often dynamic.
In contrast, ML researchers often evaluate ML models and

training algorithms using static datasets, which remain fixed
over time, such as ImageNet [17], MNIST [39], or CIFAR [37].
Implications for ML. Machine learning models should

account for the dynamic nature of data for three key reasons.
First, new data reflects the latest trends and reveals poten-
tial distribution shifts, which are critical to capture in many
application domains, such as recommender systems [25, 26].
For example, in GrubHub’s food delivery service, incorpo-
rating data from a day before model training increases the
purchase rate by 20% compared to training on data from
only the previous week [20]. Second, even if data distribu-
tions remain fairly stable over time, simply training on more
data as it becomes available can improve model quality, by
allowing the model to generalize across more data points.
In many real-world settings, data is continuously collected.
For example, Tesla continuously captures new image data
from streets all over the world and uses this data to train
their autonomous driving models to generalize better [69].
Finally, model training also needs to comply with privacy
regulations (e.g., GDPR [21], CCPA [63]), which may require
some data to be deleted after a period of time. Deleted data
must be “unlearned” by the model [10].

Hence, ML practitioners frequently retrain or finetune
models to account for dataset updates [6, 28–30, 36, 52, 70].
As datasets grow to petabyte scale [81], frequently revisiting
all data for training is cost and time prohibitive.

2.2 ML Theory Perspective
Two key questions arise for efficient ML training ML on
dynamic datasets: when to (re)train a model and on what
data? ML researchers have proposed techniques for when to
train [24, 40, 44, 58, 67, 68] and what data to train on [1, 2, 31,
33, 34, 45, 46, 55, 56]. However, these research questions have
thus far primarily been explored separately and in the context
of static datasets. For example, the data selection community
has focused on finding representative subsets of data for
static datasets, which can be used to train a ML model with
fewer data samples and hence lower cost at similar accuracy.
Meanwhile, statisticians have explored how to quantify and
detect shifts in data distributions, which can be useful for
determining when a model should train on new data.

Continual learning (CL) [1, 2, 4, 19, 34, 42, 56]—also called
incremental learning [13, 54, 77]—is a related paradigm of
ML training on continuous streams of data. CL focuses on
learning new classes, usually grouped into tasks. CL has dif-
ferent variants and assumptions, such as the disjoint task
formulation, stating that the model only sees data for task 1,
then only data for task 2, etc. A common benchmark dataset
is Split-MNIST [1, 56], which defines a task as two numbers
in MNIST. However, this and other datasets commonly used
for CL research are synthetic, small, and lack a real notion of
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time. This makes them unrepresentative of dynamic datasets
that arise in practical ML use cases in the wild, where it is of-
ten necessary to learn new representations of existing classes
rather than new classes [78]. Furthermore, CL research has
not addressed the question of when to trigger training.

2.3 (Lack of) System Support
Requirements. A platform for ML on dynamic datasets
must support frequent model (re)training, by implementing
algorithms for when and what data to train on. The platform
must also store large volumes of data at low cost while pro-
viding fast access to the most relevant data for training. As
algorithms deciding what data to train on often rely on infor-
mation from previous training rounds, such as the loss [45],
or pre-computed forward passes to upper bound the gradient
norm [33], the platform must also manage large volumes of
metadata. For example, training a recommendation model on
the 1TB Criteo dataset [16], which contains 24 days worth
of data with 180 million samples per day, requires logging
metadata for 4 320 million sample IDs.

Current Solutions.ML operations (MLOps) refers to sys-
tem infrastructure for managing ML workflows and model
life cycles [72]. Several closed-source platforms, like Weights
& Biases [9], support data selection and dataset version-
ing [74]. Other relevant commercial systems include Amazon
SageMaker [3] and NeptuneAI [49]. Open-source platforms
such as Tensorflow TFX [47] and MLflow [14] support data
validation, model versioning, and experiment tracking, but
were not built with dynamic datasets in mind. Setting up
a workflow that frequently trains a model requires signif-
icant manual plumbing [6]. To ingest dynamic data from
stream processing engines and batch ETL jobs, practition-
ers can use feature stores, such as Feast [23], which build,
store, and update features from raw data for training or in-
ference. Renate [80] and Avalanche [41] offer experimental
infrastructure for continual learning policies. Systems such
as Ekya [8], which optimizes continuous retraining for vision
models on edge devices, and Ekko [62], which optimizes the
propagation of model updates for recommendation systems,
cater to specific use cases. In contrast, we strive for a more
general platform to explore data selection and training poli-
cies across a variety of application domains. While current
solutions offer useful building blocks, there is no off-the-shelf
end-to-end platform that meets these requirements.
Call To Action. To enable the exploration of research

challenges that arise for ML on dynamic datasets, we need an
end-to-end platform that seamlessly manages large volumes
of data and metadata, while providing pluggable interfaces
for the algorithmic exploration of when to trigger model
training and on which data (Section 3). Researchers also need

access to representative open-source datasets and model
training benchmarks (Section 5).

3 DESIGNING A PLATFORM FOR ML ON
DYNAMIC DATASETS

We first formulate the paradigm of ML training on dynamic
datasets (Section 3.1). We then present an initial architecture
for a system supporting this paradigm (Section 3.2).

3.1 Modeling the Training Process
When training on dynamic datasets, there are two crucial de-
cisions, namely (i) determining the best time when to initiate
a new training process, and (ii) selecting what is the most
appropriate data to train on. We refer to the initiation of a
new training process as a trigger, and the decision process
involved in determining the optimal time for starting a new
training process as the triggering policy. Notably, the decision
on what data to use for training is independent of when to
trigger, and it is governed by a data selection policy.
Triggering. Consider a discrete time clock that governs

the arrival of a list of =C ≥ 0 new samples denoted as
(C = (B1, ..., B=C ), where C is the current timestep. Each sam-
ple B8 ∈ (C comprises a unique identifier, a label, and a data
payload. We provide (C to the triggering policy upon arrival.
The policy’s objective is to determine which B8 ∈ (C triggers
a new training process, if any, i.e., it outputs an ordered list
TC = (8 ∈ [1 . . . =C ] | B8 ∈ (C causes trigger). The triggering
policy is stateful and can theoretically utilize information
over the entire history of samples, i.e., for all C ′ ≤ C , it can
leverage (C ′ or properties of it, to come to a triggering deci-
sion. For instance, the policy could choose to trigger retrain-
ing every 10th data point by tracking the number of data
points observed since the last trigger.

Data Selection. On each trigger, the data selection policy
selects which data points to train on. The policy selects from
all previously seen data points, i.e., they can come from any
(C ′ with C ′ < C , and all samples in (C until the trigger occurs.
Each trigger has a unique, strictly monotonously increasing
id : ∈ N. Let : ∈ TC with B: ∈ (C causing the overall G-th
trigger. The data selection policy defines and provides the
G-th trigger training set

DG ⊆
(
{B8 ∈ (C | 8 ≤ :} ∪

⋃
C ′<C

set ((C ′ )
)
× R, (1)

i.e., a set of samples and associated weights to train on for
trigger G . The sample weights are used to prioritize samples
by multiplying their gradients with the weights during back-
propagation. The trigger training set is a subset of all data
points seen so far, so it may, but does not have to, contain
samples from previous triggers. The details on how DG is
calculated are algorithm-dependent.
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Figure 1: Proposed Modyn system architecture.

3.2 Platform Architecture
We present our vision for the Modyn platform and an early-
stage proof of concept1. In our discussion here, we are not
concernedwith proposing an optimized system design. Rather
we discuss a high-level system architecture to give a concrete
idea of what a platform that addresses the requirements for
model training on dynamic datasets might look like.

Figure 1 shows the proposed system architecture. The core
of Modyn consists of the supervisor, which implements the
triggering policy, and the selector, which implements the data
selection policy, based on metadata collected and managed
by the platform. The trainer server executes training jobs
on data fetched from Modyn’s data storage component. For
modularity, all components are decoupled and communicate
via gRPC and FTP. Section 3.4 describes each component’s
role in more detail.

We assume Modyn ingests data from stream processing
engines (e.g., Flink [12]) or batch processing frameworks
(e.g., Spark [79]). We expect a labled input data stream. Such
labels can be either obtained automatically (e.g., track which
advertisements a user clicked on) or from human-in-the-
loop annotation systems [76] that provide end-to-end so-
lutions for data labeling. The output of Modyn is a stream
of trained ML models that can then either be further pro-
cessed or deployed for serving, using tools like BentoML [7],
TorchServe [57], or Triton Inference Server [51].

Modyn Pipelines. The core unit of execution in Modyn
is a pipeline. A pipeline comprises a comprehensive descrip-
tion of a training process on a dynamic dataset, i.e., it defines
the trigger policy, the data selection policy, the model archi-
tecture, and further training parameters, such as learning
1Our code is available at: https://github.com/eth-easl/modyn.

rate, optimization criterion, etc. In the prototype, it is config-
ured via a yaml file (c.f. Section 3.3). To run a pipeline, the
user starts the supervisor and supplies the configuration file.

Overview of Data Flow. When running a pipeline, data
samples stream in from outside Modyn into the data storage
component, which assigns a key to each sample that is used
to uniquely identify it. Data storage informs the supervisor
about new samples by their key ①. The supervisor checks
for triggers and forwards potential triggers and the sample
keys to the selector ②. Upon trigger, the supervisor contacts
the trainer server to start a training process ③. The trainer
requests the trigger training set from the selector ④, and
the sample data from the storage ⑤. The trainer then runs a
training according to the configuration ⑥.The trained model,
the output of Modyn, can then be used in further steps in
the overall ML workflow, such as deployment ⑦.
Current Prototype. Our proof of concept supports ML

pipelines with custom optimizers, learning rate schedulers,
mixed-precision training, custom CUDA extensions, and
other features needed to run an initial example use case
of recommender system training, described in Section 4 We
can execute pipelines in either experiment mode or produc-
tion mode. In production mode, the data storage informs the
supervisor when new data points come in. In experiment
mode, the data storage simulates new data points streaming
in by announcing already existing data points as “new” to the
supervisor. The experiment mode can be used to play various
traces and compare how policies do given the same data en-
vironment and initial model config. The insights gained from
these experiments can then be used to find a configuration
for production mode.
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1 model:
2 id: ResNet18
3 config: ...
4 training:
5 use_previous_model: True
6 optimizers: ...
7 optimization_criterion:
8 name: "CrossEntropyLoss"
9 selection_strategy:

10 name: NewDataStrategy
11 config:
12 reset_after_trigger: True
13 data:
14 dataset_id: mnist
15 transformations: ["transforms.Normalize(...)"]
16 bytes_parser_function: |
17 def bytes_parser_function(data: bytes) -> Image:
18 return Image.open(io.BytesIO(data))
19 trigger:
20 id: DataAmountTrigger
21 trigger_config:
22 data_points_for_trigger: 100

Listing 1: Excerpt from a example Modyn pipeline

3.3 Pipeline User API
A pipeline is the core unit of execution inModyn. Listing 1

shows an example pipeline. At minimum, a pipeline consists
of (1) the model specification, (2) the training dataset, and a
corresponding byte parsing function that defines how to con-
vert raw sample bytes to model input, (3) the trigger policy,
(4) the data selection policy, (5) training hyperparameters
such as optimization criterion, optimizer, learning rate, batch
size, and (6) training configuration such as data processing
workers, whether to use automatic mixed precision, etc. The
user can define whether a training on trigger should start
with the previously trained model, or start with a randomly
initialized model each time.The very first training can run on
a randomly initialized or externally provided model. When
a model is supported by Modyn, a ML engineer can run a
pipeline by simply providing a yaml file like the one in List-
ing 1. Users can easily add new models, triggering policies,
and data selection strategies as pluggable Python modules
and use the yaml configuration file to select particular strate-
gies for a pipeline.

3.4 Component Overview
We discuss each Modyn component from Figure 1, including
its role in enabling ML researchers to explore triggering
and data selection policies while alleviating users from the
burden of data management and job orchestration.
Supervisor. The supervisor is the brain of a pipeline as

it coordinates the control and data flow. It registers a new
pipeline at all components. The supervisor receives the keys
of new samples from storage, and forwards them to the selec-
tor. On the G-th trigger, it notifies the trainer server to train

on the trigger training set DG . The supervisor implements
additional coordination mechanisms, such as supplying the
model from the previous trigger to the trainer server.

In addition to coordinating pipeline execution, the su-
pervisor implements triggering policies. We identify three
types of triggers: (i) amount-based, (ii) time-based, and (iii)
drift-based triggers. Amount-based triggers fire every = data
points, while time-based triggers fire after a time interval
has passed. Drift-based triggers are based on detection of
distribution shifts, either in the input data distribution or
the model output distribution (i.e., the performance of the
deployed model). They are more adaptive to the data stream
than amount- and time-based triggers. We currently support
time and amount-based triggers and plan to add support for
drift-based triggers. For input-drift triggers, we can leverage
research from the ML community on distribution shift de-
tection, with methods such as MatchMaker [44], Odin [67],
DriftSurf [68], and many more [24, 40, 58]. Output-drift trig-
gers require connecting Modyn to the inference pipeline,
which our prototype does not currently support.

Selector. The selector implements data selection policies
that, on trigger G , output the trigger training set DG . We
differentiate between online and offline selection policies.
Offline policies are policies that calculate DG on trigger by
collecting all samples and running calculations on potentially
all previous data points. Common examples of such policies
include coreset algorithms. While the term coreset can be
generally used to describe any data reduction technique,
the approach has primarily been applied to static datasets.
Examples of offline coreset algorithms include DLIS [33],
CRAIG [46], and AdaCore [55]. Examples of other offline
selection techniques include RHO-LOSS [45] and Shapley-
value based techniques [31]. Examples of online policies
include continual learning samplers, such as GDumb [56],
MIR [1], CLiB [34], and GSS [2]. The pluggable selector in-
terface aims to enable ML researchers to implement and
compare such policies, as well as develop their own policies
to optimize model accuracy, training time, energy, and cost.

In our proof of concept, we implement simple baseline
strategies, such as outputting all seen samples, subsampling
a smaller data set uniformly at random, or subsampling with
priority on newer data points. Data selection strategies can be
used with or without reset of the internal strategy state after
a trigger, e.g., the strategy that outputs all seen datapoints
can be used both for retraining from scratch (no reset) or
finetuning the previous model (reset).
Trainer Server. Compatibility with existing ML infras-

tructure is one of our design principles. The trainer server
implements a generic training interface that runs a model
training job based on a pipeline definition. Our prototype cur-
rently implements a PyTorch-based trainer, however, the de-
sign is agnostic to the ML framework and can be extended to
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Tensorflow or higher level abstractions, such as SageMaker.
The trainer server executes a training loop, which consists of
steps, such as model initialization, setup of optimizer(s), and
handling registered callbacks (e.g., for metadata collection).
The trainer fetches data from the storage layer and interacts
with the selector via an OnlineDataset abstraction.

Data Storage. Modyn pipelines ingests files from data
sources such as stream processing or ETL jobs. The data
storage component abstracts different file formats and file
systems (e.g., local file system or remote storage services like
S3). Each file can contain one or more samples, which can
be of any form, e.g., entire files, database rows, etc. The goal
of Modyn’s storage abstraction is to decouple the trainer
from the underlying data representation and to minimize the
amount of data transferred. Our proof of concept currently
assumes data is stored in a flat, single-tier storage system.
Extending the storage hierarchy to multiple tiers and de-
signing data importance-aware caching policies is promising
direction to optimize data storage costs and performance.
Metadata Processor. The metadata processor is respon-

sible for transforming collected metadata (e.g., compressing
gradients) and persisting it to Modyn’s metadata database.
While we currently collect and store metadata per training
sample, the optimal granularity for metadata collection and
storage to balance storage costs, query latencies, and the ef-
fectiveness of data selection and triggering policies remains
an open question.

4 INITIAL EXPERIENCE
Example Use Case. We train a DLRM recommendation
model [48] on the Criteo 1TB click stream dataset [16], which
provides user data over 24 days, with roughly 180million
samples per day. As the dataset is split into days, we can
replay it as a dynamic dataset over time. Given anonymized
categorical and numerical features of users, the task is to
predict whether a user will click on an advertisement or not.

Experimental Setup. We integrate NVIDIA’s implemen-
tation [50] of a DLRM [48] in the Modyn prototype. Fol-
lowing NVIDIA’s small setup [50], we preprocess the Criteo
dataset with a frequency threshold of 15. We configure the
pipelinewith the training hyperparameters (optimizers, learn-
ing rate scheduler) in the NVIDIA repository and use mixed-
precision training. We train on a A100 40GB GPU with a
time-based daily trigger, i.e., we trigger training for each
day in the dataset, starting with the model from the previ-
ous trigger. This means that we finetune the model from the
previous day on the subsequent day.

Initial Results. In Figure 2, we show the area under curve
(AUC) for the models trained per daily trigger from day 1
to day 9 and evaluating on day 10. Training on fresher data
is beneficial, as the AUC increases by 3 percentage points

1 2 3 4 5 6 7 8 9
Day (Trigger)

0.7

0.8

0.9

1.0

A
U
C

Model Performance on Day 10

Figure 2: DLRMperformance on day 10 of Criteo, when
finetuned on data from day 0 - day 9.
from 0.76 for day 1 to 0.79 for day 9. Considering that recent
work reports that 0.2 percent points increase in CTR AUC
leads to a 1% annual revenue increase [75], these results seem
promising.This experimentmotivates further research on the
performance and cost-performance tradeoffs of triggering
and selection policies, which we discuss in Section 6.

5 TOWARDS A BENCHMARK SUITE
Previous work on data selection and drift detection has fo-
cused on static, small-scale datasets, which do not reflect
many real scenarios. Accompanying Modyn, we are in the
process of building a benchmark suite for representative
ML use cases with dynamic datasets. We focus on publicly-
available datasets which are inherently dynamic and tasks
where ML models need to be adjusted in order to maintain
good quality. Our goal is to fully integrate these datasets
and models in Modyn to facilitate future research. Next, we
describe some use cases we plan to include.
Recommendation Systems. Clickthrough rate (CTR)

prediction is a common use case for recommendation mod-
els. We integrate the Criteo 1 TB 24-day dataset [16] and the
10-day Avazu [73] dataset with NVIDIA’s DLRM implemen-
tation [48, 50].

Natural Language Processing. We target content classi-
fication with NLP models, such as BERT [18], on a collection
of Reddit data gathered with the PushShift API [5]. The task
is to classify posts into subreddits. To achieve high accuracy,
the model must adjust to topic discussions over time [38, 78].
Autonomous Driving. We target motion prediction in

self-driving cars, integrating datasets such as Waymo [66],
nuScenes [11], and Cityscapes [15], along with open-source
object detection models, such as YOLO [59]. As autonomous
driving data is continuously collected to capture as many sce-
narios as possible, models need to be frequently updated [22,
40, 69].

Weather Prediction. We focus on atmospheric variable
prediction using the ERA5 [27] dataset, with the FourCast-
Net [53] model. The ERA5 dataset contains multiple climate
features (e.g., moisture, wind, radiation, precipitation) gath-
ered over many years. The natural temporal distribution shift
of weather over time requires model adjustments [40, 78].
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The ML community has developed several benchmarks
for data distribution shifts, which we can also incorporate.
WILDS [35] spans 10 datasets with applications such as
healthcare and toxicity classification. Wild-Time [78] con-
sists of 5 datasets with temporal distribution shifts, encom-
passing use cases such as healthcare and news classifica-
tion. Shifts [43] provides industry-sourced datasets, includ-
ing weather prediction, machine translation, and self-driving
cars. Vela et al. [71] analyze model performance degradation
over time on 32 datasets from 4 industries. We welcome
contributions to the benchmark suite.

6 OPEN RESEARCH QUESTIONS
We discuss open research questions that arise for ML on
dynamic datasets from both a systems and ML perspective.
Designing Data Selection and Triggering Policies.

While ML literature has explored data selection for both
static and dynamic datasets [1, 33, 34, 45, 56], the adaption
of existing static methods, such as coresets [33, 46, 55], to
the dynamic setting remains an open problem. Similarly,
while prior work explores how data drift affects model accu-
racy [20, 26, 38, 81], designing training triggering policies–
particularly in concert with data selection policies–to address
changes in training data distributions is an open research
area. In context of system/algorithm co-design, feedback
from inference can help detect when to trigger the next
training (e.g., when inference performance degrades).
Metrics for Policy Comparison. Triggering and data

selection policies impact the frequency of training and how
much data is selected for a training pass. Reasoning about the
joint impact on training time, training cost, energy consump-
tion, and model accuracy is non-trivial. What are the right
metrics to quantify and reason about the accuracy-energy-
cost tradeoff of data selection and triggering policies across
a variety of ML training use cases?

Metadata Management. Which metadata should be per-
sisted and how to store it efficiently? It is not clear at which
granularity metadata needs to be maintained to effectively
support data selection and triggering policies. Managing per-
sample metadata for large datasets with billions of samples
while minimizing storage costs and enabling low-latency
queries is challenging. How can we efficiently collect and
store metadata such that metadata collection and querying
is not a bottleneck during training?
Model Management. Model management is an active

area of research [60, 64, 65]. Multiple model versions natu-
rally arise when training jobs are continually triggered and
it may be desirable to switch between different models (e.g.,
exploration of different models or rollback in case of perfor-
mance degradation). How can we optimize model storage
and retrieval? For example, when the weights of a model

change only slightly between triggers, we could store only
the changes to the weights to reduce storage requirements.

Monitoring and Debugging. ML models can fail in com-
plex ways, making continuous model monitoring and testing
critical for production use cases. Debugging model perfor-
mance is challenging [3, 32], and is only made more difficult
when models are frequently updated in response to changes
in training data. What kind of system support is needed for
model performance debugging, particularly in dynamic data
environments?

7 CONCLUSION
We identify a gap between ML research and practice: while
researchers often train and evaluate ML models with static
datasets, ML models in the wild often train on large datasets
that are dynamic in nature. Two key challenges arise for
ML on dynamic datasets: when to train and on what data to
train). However today’s ML ecosystem lacks infrastructure
to jointly explore these questions with representative use
cases. We propose our vision for an open-source platform
and benchmark suite to explore training triggers and data se-
lection policies in practical use cases, while alleviating users
from the burden of managing large datasets and orchestrat-
ing recurring training jobs. Model training on dynamic data
opens many research directions, such as designing efficient
metadata and data management systems and designing data
selection and triggering policies to meet model accuracy re-
quirements while minimizing training costs. We welcome
contributions from the community.
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