
Towards A Platform and Benchmark Suite
for Model Training on Dynamic Datasets

Maximilian Böther
ETH Zurich
Switzerland

mboether@inf.ethz.ch

Foteini Strati
ETH Zurich
Switzerland

fstrati@inf.ethz.ch

Viktor Gsteiger
ETH Zurich
Switzerland

vgsteiger@student.ethz.ch

Ana Klimovic
ETH Zurich
Switzerland

aklimovic@ethz.ch

ABSTRACT
Machine learning (ML) is often applied in use cases where 
training data evolves and/or grows over time. Training must 
incorporate data changes for high model quality, however 
this is often challenging and expensive due to large datasets 
and models. In contrast, ML researchers often train and eval-
uate ML models on static datasets or with artificial assump-
tions about data dynamics. This gap between research and 
practice is largely due to (i) the absence of an open-source 
platform that manages dynamic datasets at scale and sup-
ports pluggable policies for when and what data to train on, 
and (ii) the lack of representative open-source benchmarks 
for ML training on dynamic datasets. To address this gap, we 
propose to design a platform that enables ML researchers and 
practitioners to explore training and data selection policies, 
while alleviating the burdens of managing large dynamic 
datasets and orchestrating recurring training jobs. We also 
propose to build an accompanying benchmark suite that 
integrates public dynamic datasets and ML models from a 
variety of representative use cases.
ACM Reference Format:
Maximilian Böther, Foteini Strati, Viktor Gsteiger, and Ana Klimovic. 
2023. Towards A Platform and Benchmark Suite for Model Training 
on Dynamic Datasets. In 3rd Workshop on Machine Learning and 
Systems (EuroMLSys ’23), May 8, 2023, Rome, Italy. ACM, New York, 
NY, USA, 10 pages. https://doi.org/10.1145/3578356.3592585

1 INTRODUCTION
Machine Learning (ML) datasets encountered in real-life 
scenarios are inherently dynamic, i.e., samples get added or 
removed over time. Data is constantly collected via sensors, 
IoT devices, self-driving cars, and satellites [8, 40, 69]. At 
Meta, the training dataset used for recommendation models

EuroMLSys ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0084-2/23/05.
https://doi.org/10.1145/3578356.3592585

spans exabytes of storage, and its size has doubled in the past
two years [81]. At the same time, social trends and emerging
events cause natural data distribution shifts [38, 71]. Data
may also need to be deleted after a period of time, for example,
due to privacy regulations, such as the GDPR [21].

ML models need to account for the dynamic nature of data.
According to Meta’s studies, training recommendation mod-
els daily results in significantly higher quality than training
weekly [26, 81]. Similarly, transformer models struggle to
keep up with the distribution shifts in real datasets, requiring
frequent updates [38].

Training ML models on dynamic datasets raises two key
questions: when to update an ML model, and what data to
train it on? Naively retraining a model from scratch on the
entire dataset when new data becomes available is prohibi-
tively expensive and slow. The training cost is proportional
to the data volume, which can be in the order of petabytes
or exabytes [22, 81]. Fine-tuning the model on each new ex-
ample as it arrives is also impractical in production, due to
strict, time-consuming deployment checks [29].

The ML community has been exploring these questions by
developing techniques to detect data distribution shifts [40,
58] and find an appropriate subset of data to train on [33,
46, 55, 56]. However, most of these works focus on small-
scale, static datasets such as CIFAR [37], MNIST [39], and
ImageNet [17], while datasets used in production are signifi-
cantly larger and dynamic. Previous works often artificially
split data into tasks, and gradually reveal them to the model
to simulate dynamicity [56]. Unfortunately, these assump-
tions are not always realistic [78], leaving a gap between
research and practice.

We identify two key reasons for the gap between prac-
tical ML use cases and the scenarios typically studied by
researchers. First, there is no end-to-end ML platform built
from the ground up for dynamic datasets. Such a platform
needs to deal with huge amounts of data and metadata, mon-
itor the data ingestion process, and implement and apply
the appropriate data selection algorithm, which often has a
high computational cost. The platform must also be modular
and flexible enough to encompass various use cases with
different policies for when and what to train on. Although
the need for such a platform has been acknowledged by ML

8

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0003-4093-4361
https://orcid.org/0000-0003-3364-2109
https://orcid.org/0000-0002-6750-5500
https://orcid.org/0000-0001-8559-0529
https://doi.org/10.1145/3578356.3592585
https://doi.org/10.1145/3578356.3592585
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578356.3592585&domain=pdf&date_stamp=2023-05-08


EuroMLSys ’23, May 8, 2023, Rome, Italy Maximilian Böther, Foteini Strati, Viktor Gsteiger, and Ana Klimovic

practitioners [52, 61, 70], and there exist various individual
components for different parts of this process [6, 49, 74],
there is currently no open-source platform that meets all
these requirements. Second, it is difficult to find representa-
tive open-source ML benchmarks with dynamic datasets, as
most companies keep their data private for regulatory and
tradesecret reasons. This causes academic research to evolve
around small-scale, static datasets. In this paper, we outline
our vision on how to address these two problems. We make
the following contributions.
(1) We propose to bring often separated areas of ML research

together by formulating the paradigm of ML training on
dynamic datasets.We discuss how existing researchmaps
onto the two dimensions, when and on what data to train.

(2) We present our vision for an open-source end-to-end plat-
form for ML on dynamic datasets, Modyn, which aims
to enable ML researchers to easily experiment with data
selection and training triggering policies, while abstract-
ing the complexities of large-scale data management and
system orchestration.

(3) To facilitate ML research on practical use cases, we pro-
pose a benchmark suite comprising open-source datasets
that are inherently dynamic and span various application
domains (e.g., recommendation systems, autonomous
driving, NLP). We are in the process of combining these
datasets with publicly available models, and integrating
them in an initial prototype of Modyn to allow for end-
to-end, easy-to-use, representative benchmarks.

This paper presents early-stage work and lays out our
initial ideas on how to address model training on dynamic
datasets. We welcome feedback and contributions from the
community. We aim to stimulate collaboration between in-
dustry and academia to explore diverse challenges that arise
in practical ML use cases, where data is inherently dynamic.

2 BACKGROUND AND MOTIVATION
We define dynamic datasets (Section 2.1) and outline the
challenges they present from a ML theory perspective (Sec-
tion 2.2) and system perspective (Section 2.3). The gap in
system support for managing dynamic data in today’s ML
ecosystemmotivates us to propose a new platform and bench-
mark suite for ML on dynamic datasets.

2.1 Dynamic Datasets
We define dynamic datasets as datasets that change over time.
Changes may consist of adding new data points (e.g., a sensor
data source continually collects new data), removing old
data points (e.g., due to privacy regulations), or editing data
points (e.g., by applying data cleaning techniques). In real-
world applications of ML, training data is often dynamic.
In contrast, ML researchers often evaluate ML models and

training algorithms using static datasets, which remain fixed
over time, such as ImageNet [17], MNIST [39], or CIFAR [37].
Implications for ML. Machine learning models should

account for the dynamic nature of data for three key reasons.
First, new data reflects the latest trends and reveals poten-
tial distribution shifts, which are critical to capture in many
application domains, such as recommender systems [25, 26].
For example, in GrubHub’s food delivery service, incorpo-
rating data from a day before model training increases the
purchase rate by 20% compared to training on data from
only the previous week [20]. Second, even if data distribu-
tions remain fairly stable over time, simply training on more
data as it becomes available can improve model quality, by
allowing the model to generalize across more data points.
In many real-world settings, data is continuously collected.
For example, Tesla continuously captures new image data
from streets all over the world and uses this data to train
their autonomous driving models to generalize better [69].
Finally, model training also needs to comply with privacy
regulations (e.g., GDPR [21], CCPA [63]), which may require
some data to be deleted after a period of time. Deleted data
must be “unlearned” by the model [10].

Hence, ML practitioners frequently retrain or finetune
models to account for dataset updates [6, 28–30, 36, 52, 70].
As datasets grow to petabyte scale [81], frequently revisiting
all data for training is cost and time prohibitive.

2.2 ML Theory Perspective
Two key questions arise for efficient ML training ML on
dynamic datasets: when to (re)train a model and on what
data? ML researchers have proposed techniques for when to
train [24, 40, 44, 58, 67, 68] and what data to train on [1, 2, 31,
33, 34, 45, 46, 55, 56]. However, these research questions have
thus far primarily been explored separately and in the context
of static datasets. For example, the data selection community
has focused on finding representative subsets of data for
static datasets, which can be used to train a ML model with
fewer data samples and hence lower cost at similar accuracy.
Meanwhile, statisticians have explored how to quantify and
detect shifts in data distributions, which can be useful for
determining when a model should train on new data.

Continual learning (CL) [1, 2, 4, 19, 34, 42, 56]—also called
incremental learning [13, 54, 77]—is a related paradigm of
ML training on continuous streams of data. CL focuses on
learning new classes, usually grouped into tasks. CL has dif-
ferent variants and assumptions, such as the disjoint task
formulation, stating that the model only sees data for task 1,
then only data for task 2, etc. A common benchmark dataset
is Split-MNIST [1, 56], which defines a task as two numbers
in MNIST. However, this and other datasets commonly used
for CL research are synthetic, small, and lack a real notion of

9



Towards A Platform and Benchmark Suite for Model Training on Dynamic Datasets EuroMLSys ’23, May 8, 2023, Rome, Italy

time. This makes them unrepresentative of dynamic datasets
that arise in practical ML use cases in the wild, where it is of-
ten necessary to learn new representations of existing classes
rather than new classes [78]. Furthermore, CL research has
not addressed the question of when to trigger training.

2.3 (Lack of) System Support
Requirements. A platform for ML on dynamic datasets
must support frequent model (re)training, by implementing
algorithms for when and what data to train on. The platform
must also store large volumes of data at low cost while pro-
viding fast access to the most relevant data for training. As
algorithms deciding what data to train on often rely on infor-
mation from previous training rounds, such as the loss [45],
or pre-computed forward passes to upper bound the gradient
norm [33], the platform must also manage large volumes of
metadata. For example, training a recommendation model on
the 1TB Criteo dataset [16], which contains 24 days worth
of data with 180 million samples per day, requires logging
metadata for 4 320 million sample IDs.

Current Solutions.ML operations (MLOps) refers to sys-
tem infrastructure for managing ML workflows and model
life cycles [72]. Several closed-source platforms, like Weights
& Biases [9], support data selection and dataset version-
ing [74]. Other relevant commercial systems include Amazon
SageMaker [3] and NeptuneAI [49]. Open-source platforms
such as Tensorflow TFX [47] and MLflow [14] support data
validation, model versioning, and experiment tracking, but
were not built with dynamic datasets in mind. Setting up
a workflow that frequently trains a model requires signif-
icant manual plumbing [6]. To ingest dynamic data from
stream processing engines and batch ETL jobs, practition-
ers can use feature stores, such as Feast [23], which build,
store, and update features from raw data for training or in-
ference. Renate [80] and Avalanche [41] offer experimental
infrastructure for continual learning policies. Systems such
as Ekya [8], which optimizes continuous retraining for vision
models on edge devices, and Ekko [62], which optimizes the
propagation of model updates for recommendation systems,
cater to specific use cases. In contrast, we strive for a more
general platform to explore data selection and training poli-
cies across a variety of application domains. While current
solutions offer useful building blocks, there is no off-the-shelf
end-to-end platform that meets these requirements.
Call To Action. To enable the exploration of research

challenges that arise for ML on dynamic datasets, we need an
end-to-end platform that seamlessly manages large volumes
of data and metadata, while providing pluggable interfaces
for the algorithmic exploration of when to trigger model
training and on which data (Section 3). Researchers also need

access to representative open-source datasets and model
training benchmarks (Section 5).

3 DESIGNING A PLATFORM FOR ML ON
DYNAMIC DATASETS

We first formulate the paradigm of ML training on dynamic
datasets (Section 3.1). We then present an initial architecture
for a system supporting this paradigm (Section 3.2).

3.1 Modeling the Training Process
When training on dynamic datasets, there are two crucial de-
cisions, namely (i) determining the best time when to initiate
a new training process, and (ii) selecting what is the most
appropriate data to train on. We refer to the initiation of a
new training process as a trigger, and the decision process
involved in determining the optimal time for starting a new
training process as the triggering policy. Notably, the decision
on what data to use for training is independent of when to
trigger, and it is governed by a data selection policy.
Triggering. Consider a discrete time clock that governs

the arrival of a list of =C ≥ 0 new samples denoted as
(C = (B1, ..., B=C ), where C is the current timestep. Each sam-
ple B8 ∈ (C comprises a unique identifier, a label, and a data
payload. We provide (C to the triggering policy upon arrival.
The policy’s objective is to determine which B8 ∈ (C triggers
a new training process, if any, i.e., it outputs an ordered list
TC = (8 ∈ [1 . . . =C ] | B8 ∈ (C causes trigger). The triggering
policy is stateful and can theoretically utilize information
over the entire history of samples, i.e., for all C ′ ≤ C , it can
leverage (C ′ or properties of it, to come to a triggering deci-
sion. For instance, the policy could choose to trigger retrain-
ing every 10th data point by tracking the number of data
points observed since the last trigger.

Data Selection. On each trigger, the data selection policy
selects which data points to train on. The policy selects from
all previously seen data points, i.e., they can come from any
(C ′ with C ′ < C , and all samples in (C until the trigger occurs.
Each trigger has a unique, strictly monotonously increasing
id : ∈ N. Let : ∈ TC with B: ∈ (C causing the overall G-th
trigger. The data selection policy defines and provides the
G-th trigger training set

DG ⊆
(
{B8 ∈ (C | 8 ≤ :} ∪

⋃
C ′<C

set ((C ′ )
)
× R, (1)

i.e., a set of samples and associated weights to train on for
trigger G . The sample weights are used to prioritize samples
by multiplying their gradients with the weights during back-
propagation. The trigger training set is a subset of all data
points seen so far, so it may, but does not have to, contain
samples from previous triggers. The details on how DG is
calculated are algorithm-dependent.

10



EuroMLSys ’23, May 8, 2023, Rome, Italy Maximilian Böther, Foteini Strati, Viktor Gsteiger, and Ana Klimovic

Figure 1: Proposed Modyn system architecture.

3.2 Platform Architecture
We present our vision for the Modyn platform and an early-
stage proof of concept1. In our discussion here, we are not
concernedwith proposing an optimized system design. Rather
we discuss a high-level system architecture to give a concrete
idea of what a platform that addresses the requirements for
model training on dynamic datasets might look like.

Figure 1 shows the proposed system architecture. The core
of Modyn consists of the supervisor, which implements the
triggering policy, and the selector, which implements the data
selection policy, based on metadata collected and managed
by the platform. The trainer server executes training jobs
on data fetched from Modyn’s data storage component. For
modularity, all components are decoupled and communicate
via gRPC and FTP. Section 3.4 describes each component’s
role in more detail.

We assume Modyn ingests data from stream processing
engines (e.g., Flink [12]) or batch processing frameworks
(e.g., Spark [79]). We expect a labled input data stream. Such
labels can be either obtained automatically (e.g., track which
advertisements a user clicked on) or from human-in-the-
loop annotation systems [76] that provide end-to-end so-
lutions for data labeling. The output of Modyn is a stream
of trained ML models that can then either be further pro-
cessed or deployed for serving, using tools like BentoML [7],
TorchServe [57], or Triton Inference Server [51].

Modyn Pipelines. The core unit of execution in Modyn
is a pipeline. A pipeline comprises a comprehensive descrip-
tion of a training process on a dynamic dataset, i.e., it defines
the trigger policy, the data selection policy, the model archi-
tecture, and further training parameters, such as learning
1Our code is available at: https://github.com/eth-easl/modyn.

rate, optimization criterion, etc. In the prototype, it is config-
ured via a yaml file (c.f. Section 3.3). To run a pipeline, the
user starts the supervisor and supplies the configuration file.

Overview of Data Flow. When running a pipeline, data
samples stream in from outside Modyn into the data storage
component, which assigns a key to each sample that is used
to uniquely identify it. Data storage informs the supervisor
about new samples by their key ①. The supervisor checks
for triggers and forwards potential triggers and the sample
keys to the selector ②. Upon trigger, the supervisor contacts
the trainer server to start a training process ③. The trainer
requests the trigger training set from the selector ④, and
the sample data from the storage ⑤. The trainer then runs a
training according to the configuration ⑥.The trained model,
the output of Modyn, can then be used in further steps in
the overall ML workflow, such as deployment ⑦.
Current Prototype. Our proof of concept supports ML

pipelines with custom optimizers, learning rate schedulers,
mixed-precision training, custom CUDA extensions, and
other features needed to run an initial example use case
of recommender system training, described in Section 4 We
can execute pipelines in either experiment mode or produc-
tion mode. In production mode, the data storage informs the
supervisor when new data points come in. In experiment
mode, the data storage simulates new data points streaming
in by announcing already existing data points as “new” to the
supervisor. The experiment mode can be used to play various
traces and compare how policies do given the same data en-
vironment and initial model config. The insights gained from
these experiments can then be used to find a configuration
for production mode.

11

https://github.com/eth-easl/modyn


Towards A Platform and Benchmark Suite for Model Training on Dynamic Datasets EuroMLSys ’23, May 8, 2023, Rome, Italy

1 model:
2 id: ResNet18
3 config: ...
4 training:
5 use_previous_model: True
6 optimizers: ...
7 optimization_criterion:
8 name: "CrossEntropyLoss"
9 selection_strategy:

10 name: NewDataStrategy
11 config:
12 reset_after_trigger: True
13 data:
14 dataset_id: mnist
15 transformations: ["transforms.Normalize(...)"]
16 bytes_parser_function: |
17 def bytes_parser_function(data: bytes) -> Image:
18 return Image.open(io.BytesIO(data))
19 trigger:
20 id: DataAmountTrigger
21 trigger_config:
22 data_points_for_trigger: 100

Listing 1: Excerpt from a example Modyn pipeline

3.3 Pipeline User API
A pipeline is the core unit of execution inModyn. Listing 1

shows an example pipeline. At minimum, a pipeline consists
of (1) the model specification, (2) the training dataset, and a
corresponding byte parsing function that defines how to con-
vert raw sample bytes to model input, (3) the trigger policy,
(4) the data selection policy, (5) training hyperparameters
such as optimization criterion, optimizer, learning rate, batch
size, and (6) training configuration such as data processing
workers, whether to use automatic mixed precision, etc. The
user can define whether a training on trigger should start
with the previously trained model, or start with a randomly
initialized model each time.The very first training can run on
a randomly initialized or externally provided model. When
a model is supported by Modyn, a ML engineer can run a
pipeline by simply providing a yaml file like the one in List-
ing 1. Users can easily add new models, triggering policies,
and data selection strategies as pluggable Python modules
and use the yaml configuration file to select particular strate-
gies for a pipeline.

3.4 Component Overview
We discuss each Modyn component from Figure 1, including
its role in enabling ML researchers to explore triggering
and data selection policies while alleviating users from the
burden of data management and job orchestration.
Supervisor. The supervisor is the brain of a pipeline as

it coordinates the control and data flow. It registers a new
pipeline at all components. The supervisor receives the keys
of new samples from storage, and forwards them to the selec-
tor. On the G-th trigger, it notifies the trainer server to train

on the trigger training set DG . The supervisor implements
additional coordination mechanisms, such as supplying the
model from the previous trigger to the trainer server.

In addition to coordinating pipeline execution, the su-
pervisor implements triggering policies. We identify three
types of triggers: (i) amount-based, (ii) time-based, and (iii)
drift-based triggers. Amount-based triggers fire every = data
points, while time-based triggers fire after a time interval
has passed. Drift-based triggers are based on detection of
distribution shifts, either in the input data distribution or
the model output distribution (i.e., the performance of the
deployed model). They are more adaptive to the data stream
than amount- and time-based triggers. We currently support
time and amount-based triggers and plan to add support for
drift-based triggers. For input-drift triggers, we can leverage
research from the ML community on distribution shift de-
tection, with methods such as MatchMaker [44], Odin [67],
DriftSurf [68], and many more [24, 40, 58]. Output-drift trig-
gers require connecting Modyn to the inference pipeline,
which our prototype does not currently support.

Selector. The selector implements data selection policies
that, on trigger G , output the trigger training set DG . We
differentiate between online and offline selection policies.
Offline policies are policies that calculate DG on trigger by
collecting all samples and running calculations on potentially
all previous data points. Common examples of such policies
include coreset algorithms. While the term coreset can be
generally used to describe any data reduction technique,
the approach has primarily been applied to static datasets.
Examples of offline coreset algorithms include DLIS [33],
CRAIG [46], and AdaCore [55]. Examples of other offline
selection techniques include RHO-LOSS [45] and Shapley-
value based techniques [31]. Examples of online policies
include continual learning samplers, such as GDumb [56],
MIR [1], CLiB [34], and GSS [2]. The pluggable selector in-
terface aims to enable ML researchers to implement and
compare such policies, as well as develop their own policies
to optimize model accuracy, training time, energy, and cost.

In our proof of concept, we implement simple baseline
strategies, such as outputting all seen samples, subsampling
a smaller data set uniformly at random, or subsampling with
priority on newer data points. Data selection strategies can be
used with or without reset of the internal strategy state after
a trigger, e.g., the strategy that outputs all seen datapoints
can be used both for retraining from scratch (no reset) or
finetuning the previous model (reset).
Trainer Server. Compatibility with existing ML infras-

tructure is one of our design principles. The trainer server
implements a generic training interface that runs a model
training job based on a pipeline definition. Our prototype cur-
rently implements a PyTorch-based trainer, however, the de-
sign is agnostic to the ML framework and can be extended to

12



EuroMLSys ’23, May 8, 2023, Rome, Italy Maximilian Böther, Foteini Strati, Viktor Gsteiger, and Ana Klimovic

Tensorflow or higher level abstractions, such as SageMaker.
The trainer server executes a training loop, which consists of
steps, such as model initialization, setup of optimizer(s), and
handling registered callbacks (e.g., for metadata collection).
The trainer fetches data from the storage layer and interacts
with the selector via an OnlineDataset abstraction.

Data Storage. Modyn pipelines ingests files from data
sources such as stream processing or ETL jobs. The data
storage component abstracts different file formats and file
systems (e.g., local file system or remote storage services like
S3). Each file can contain one or more samples, which can
be of any form, e.g., entire files, database rows, etc. The goal
of Modyn’s storage abstraction is to decouple the trainer
from the underlying data representation and to minimize the
amount of data transferred. Our proof of concept currently
assumes data is stored in a flat, single-tier storage system.
Extending the storage hierarchy to multiple tiers and de-
signing data importance-aware caching policies is promising
direction to optimize data storage costs and performance.
Metadata Processor. The metadata processor is respon-

sible for transforming collected metadata (e.g., compressing
gradients) and persisting it to Modyn’s metadata database.
While we currently collect and store metadata per training
sample, the optimal granularity for metadata collection and
storage to balance storage costs, query latencies, and the ef-
fectiveness of data selection and triggering policies remains
an open question.

4 INITIAL EXPERIENCE
Example Use Case. We train a DLRM recommendation
model [48] on the Criteo 1TB click stream dataset [16], which
provides user data over 24 days, with roughly 180million
samples per day. As the dataset is split into days, we can
replay it as a dynamic dataset over time. Given anonymized
categorical and numerical features of users, the task is to
predict whether a user will click on an advertisement or not.

Experimental Setup. We integrate NVIDIA’s implemen-
tation [50] of a DLRM [48] in the Modyn prototype. Fol-
lowing NVIDIA’s small setup [50], we preprocess the Criteo
dataset with a frequency threshold of 15. We configure the
pipelinewith the training hyperparameters (optimizers, learn-
ing rate scheduler) in the NVIDIA repository and use mixed-
precision training. We train on a A100 40GB GPU with a
time-based daily trigger, i.e., we trigger training for each
day in the dataset, starting with the model from the previ-
ous trigger. This means that we finetune the model from the
previous day on the subsequent day.

Initial Results. In Figure 2, we show the area under curve
(AUC) for the models trained per daily trigger from day 1
to day 9 and evaluating on day 10. Training on fresher data
is beneficial, as the AUC increases by 3 percentage points

1 2 3 4 5 6 7 8 9
Day (Trigger)

0.7

0.8

0.9

1.0

A
U
C

Model Performance on Day 10

Figure 2: DLRMperformance on day 10 of Criteo, when
finetuned on data from day 0 - day 9.
from 0.76 for day 1 to 0.79 for day 9. Considering that recent
work reports that 0.2 percent points increase in CTR AUC
leads to a 1% annual revenue increase [75], these results seem
promising.This experimentmotivates further research on the
performance and cost-performance tradeoffs of triggering
and selection policies, which we discuss in Section 6.

5 TOWARDS A BENCHMARK SUITE
Previous work on data selection and drift detection has fo-
cused on static, small-scale datasets, which do not reflect
many real scenarios. Accompanying Modyn, we are in the
process of building a benchmark suite for representative
ML use cases with dynamic datasets. We focus on publicly-
available datasets which are inherently dynamic and tasks
where ML models need to be adjusted in order to maintain
good quality. Our goal is to fully integrate these datasets
and models in Modyn to facilitate future research. Next, we
describe some use cases we plan to include.
Recommendation Systems. Clickthrough rate (CTR)

prediction is a common use case for recommendation mod-
els. We integrate the Criteo 1 TB 24-day dataset [16] and the
10-day Avazu [73] dataset with NVIDIA’s DLRM implemen-
tation [48, 50].

Natural Language Processing. We target content classi-
fication with NLP models, such as BERT [18], on a collection
of Reddit data gathered with the PushShift API [5]. The task
is to classify posts into subreddits. To achieve high accuracy,
the model must adjust to topic discussions over time [38, 78].
Autonomous Driving. We target motion prediction in

self-driving cars, integrating datasets such as Waymo [66],
nuScenes [11], and Cityscapes [15], along with open-source
object detection models, such as YOLO [59]. As autonomous
driving data is continuously collected to capture as many sce-
narios as possible, models need to be frequently updated [22,
40, 69].

Weather Prediction. We focus on atmospheric variable
prediction using the ERA5 [27] dataset, with the FourCast-
Net [53] model. The ERA5 dataset contains multiple climate
features (e.g., moisture, wind, radiation, precipitation) gath-
ered over many years. The natural temporal distribution shift
of weather over time requires model adjustments [40, 78].

13



Towards A Platform and Benchmark Suite for Model Training on Dynamic Datasets EuroMLSys ’23, May 8, 2023, Rome, Italy

The ML community has developed several benchmarks
for data distribution shifts, which we can also incorporate.
WILDS [35] spans 10 datasets with applications such as
healthcare and toxicity classification. Wild-Time [78] con-
sists of 5 datasets with temporal distribution shifts, encom-
passing use cases such as healthcare and news classifica-
tion. Shifts [43] provides industry-sourced datasets, includ-
ing weather prediction, machine translation, and self-driving
cars. Vela et al. [71] analyze model performance degradation
over time on 32 datasets from 4 industries. We welcome
contributions to the benchmark suite.

6 OPEN RESEARCH QUESTIONS
We discuss open research questions that arise for ML on
dynamic datasets from both a systems and ML perspective.
Designing Data Selection and Triggering Policies.

While ML literature has explored data selection for both
static and dynamic datasets [1, 33, 34, 45, 56], the adaption
of existing static methods, such as coresets [33, 46, 55], to
the dynamic setting remains an open problem. Similarly,
while prior work explores how data drift affects model accu-
racy [20, 26, 38, 81], designing training triggering policies–
particularly in concert with data selection policies–to address
changes in training data distributions is an open research
area. In context of system/algorithm co-design, feedback
from inference can help detect when to trigger the next
training (e.g., when inference performance degrades).
Metrics for Policy Comparison. Triggering and data

selection policies impact the frequency of training and how
much data is selected for a training pass. Reasoning about the
joint impact on training time, training cost, energy consump-
tion, and model accuracy is non-trivial. What are the right
metrics to quantify and reason about the accuracy-energy-
cost tradeoff of data selection and triggering policies across
a variety of ML training use cases?

Metadata Management. Which metadata should be per-
sisted and how to store it efficiently? It is not clear at which
granularity metadata needs to be maintained to effectively
support data selection and triggering policies. Managing per-
sample metadata for large datasets with billions of samples
while minimizing storage costs and enabling low-latency
queries is challenging. How can we efficiently collect and
store metadata such that metadata collection and querying
is not a bottleneck during training?
Model Management. Model management is an active

area of research [60, 64, 65]. Multiple model versions natu-
rally arise when training jobs are continually triggered and
it may be desirable to switch between different models (e.g.,
exploration of different models or rollback in case of perfor-
mance degradation). How can we optimize model storage
and retrieval? For example, when the weights of a model

change only slightly between triggers, we could store only
the changes to the weights to reduce storage requirements.

Monitoring and Debugging. ML models can fail in com-
plex ways, making continuous model monitoring and testing
critical for production use cases. Debugging model perfor-
mance is challenging [3, 32], and is only made more difficult
when models are frequently updated in response to changes
in training data. What kind of system support is needed for
model performance debugging, particularly in dynamic data
environments?

7 CONCLUSION
We identify a gap between ML research and practice: while
researchers often train and evaluate ML models with static
datasets, ML models in the wild often train on large datasets
that are dynamic in nature. Two key challenges arise for
ML on dynamic datasets: when to train and on what data to
train). However today’s ML ecosystem lacks infrastructure
to jointly explore these questions with representative use
cases. We propose our vision for an open-source platform
and benchmark suite to explore training triggers and data se-
lection policies in practical use cases, while alleviating users
from the burden of managing large datasets and orchestrat-
ing recurring training jobs. Model training on dynamic data
opens many research directions, such as designing efficient
metadata and data management systems and designing data
selection and triggering policies to meet model accuracy re-
quirements while minimizing training costs. We welcome
contributions from the community.

ACKNOWLEDGMENTS
We thank Ambarish Prakash, Roxana Stiuca, and Kevin Shao
for their contributions towards the prototype codebase. We
thank Theo Rekatsinas, Newsha Ardalani, Benoit Steiner,
Ville Kallioniemi, and Jiří Šimša for insightful discussions.
Maximilian Böther and Foteini Strati are supported by the
Swiss National Science Foundation (Project Number
200021_204620). We are grateful for Google Cloud credits.

REFERENCES
[1] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Char-

lin, Massimo Caccia, Min Lin, and Lucas Page-Caccia. 2019. On-
line Continual Learning with Maximal Interfered Retrieval. In Pro-
ceedings of the Conference on Neural Information Processing Sys-
tems (NeurIPS). https://proceedings.neurips.cc/paper/2019/hash/
15825aee15eb335cc13f9b559f166ee8-Abstract.html

[2] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. 2019.
Gradient based sample selection for online continual learning. In
Proceedings of the Conference on Neural Information Processing Sys-
tems (NeurIPS). https://proceedings.neurips.cc/paper/2019/hash/
e562cd9c0768d5464b64cf61da7fc6bb-Abstract.html

[3] Amazon. 2023. Amazon SageMaker. https://docs.aws.amazon.com/
sagemaker/index.html.

14

https://proceedings.neurips.cc/paper/2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e562cd9c0768d5464b64cf61da7fc6bb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e562cd9c0768d5464b64cf61da7fc6bb-Abstract.html
https://docs.aws.amazon.com/sagemaker/index.html
https://docs.aws.amazon.com/sagemaker/index.html


EuroMLSys ’23, May 8, 2023, Rome, Italy Maximilian Böther, Foteini Strati, Viktor Gsteiger, and Ana Klimovic

[4] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun
Choi. 2021. Rainbow Memory: Continual Learning with a Memory of
Diverse Samples. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/
cvpr46437.2021.00812

[5] Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire,
and Jeremy Blackburn. 2020. The Pushshift Reddit Dataset. In Pro-
ceedings of the International AAAI Conference on Web and Social Media
(ICWSM). https://doi.org/10.48550/ARXIV.2001.08435

[6] Denis Baylor, Kevin Haas, Konstantinos Katsiapis, Sammy Leong, Rose
Liu, Clemens Mewald, Hui Miao, Neoklis Polyzotis, Mitchell Trott,
and Martin Zinkevich. 2019. Continuous Training for Production
ML in the TensorFlow Extended (TFX) Platform. In Proceedings of the
USENIX Conference on Operational Machine Learning (OpML). https:
//www.usenix.org/conference/opml19/presentation/baylor

[7] BentoML. 2023. BentoML: Github Organization. https://github.com/
bentoml/. Accessed: 2023-03-09.

[8] Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen
Jiang, Yuanchao Shu, Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl,
and Ion Stoica. 2022. Ekya: Continuous Learning of Video Analyt-
ics Models on Edge Compute Servers. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
https://www.usenix.org/conference/nsdi22/presentation/bhardwaj

[9] Lukas Biewald. 2020. Experiment Tracking with Weights and Biases.
https://www.wandb.com/

[10] Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-
Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nico-
las Papernot. 2021. Machine Unlearning. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P). https://doi.org/10.1109/
sp40001.2021.00019

[11] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar
Beijbom. 2020. nuScenes: A Multimodal Dataset for Autonomous
Driving. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr42600.
2020.01164

[12] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink™: Stream and
Batch Processing in a Single Engine. Bulletin of the Technical Committee
on Data Engineering 38, 4 (2015).

[13] Gert Cauwenberghs and Tomaso A. Poggio. 2000. Incremen-
tal and Decremental Support Vector Machine Learning. In Pro-
ceedings of the Conference on Neural Information Processing Sys-
tems (NeurIPS). https://proceedings.neurips.cc/paper/2000/hash/
155fa09596c7e18e50b58eb7e0c6ccb4-Abstract.html

[14] Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Gh-
odsi, Sue Ann Hong, Andy Konwinski, Clemens Mewald, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, Avesh Singh,
Fen Xie, Matei Zaharia, Richard Zang, Juntai Zheng, and Corey Zu-
mar. 2020. Developments in MLflow: A System to Accelerate the
Machine Learning Lifecycle. In Proceedings of the International Work-
shop on Data Management for End-to-End Machine Learning (DEEM).
https://doi.org/10.1145/3399579.3399867

[15] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. 2016. The Cityscapes Dataset for Semantic Urban Scene
Understanding. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE. https://doi.org/10.1109/
cvpr.2016.350

[16] Criteo. 2013. Download Terabyte Click Logs. https://labs.criteo.com/
2013/12/download-terabyte-click-logs/.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
2009. ImageNet: A large-scale hierarchical image database. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT). https://doi.org/10.18653/
v1/n19-1423

[19] Tom Diethe, Tom Borchert, Eno Thereska, Borja Balle, and Neil
Lawrence. 2018. Continual Learning in Practice. In Proceedings of
the Workshop on Continual Learning at NeurIPS. https://doi.org/10.
48550/ARXIV.1903.05202

[20] Alex Egg. 2021. Online Learning for Recommendations at Grubhub.
In Proceedings of the Conference on Recommender Systems (RecSys).
https://doi.org/10.1145/3460231.3474599

[21] European Union. 2016. Art. 17 GDPR: Right to erasure (‘right to be
forgotten’). https://gdpr.eu/article-17-right-to-be-forgotten/.

[22] Clement Farabet and Nicolas Koumchatzky. 2020. Presentation: Inside
NVIDIA’s AI Infrastructure for Self-driving Cars. In Presentations of the
USENIX Conference on Operational Machine Learning (OpML). https:
//www.usenix.org/conference/opml20/presentation/farabet

[23] Feast Authors. 2023. Feast: Feature Store For Machine Learning. https:
//feast.dev/.

[24] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and
Abdelhamid Bouchachia. 2014. A survey on concept drift adaptation.
Comput. Surveys 46, 4 (2014), 1–37. https://doi.org/10.1145/2523813

[25] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha
Smelyanskiy, Liang Xiong, and Xiaodong Wang. 2018. Applied Ma-
chine Learning at Facebook: A Datacenter Infrastructure Perspective.
In Proceedings of the IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). https://doi.org/10.1109/HPCA.
2018.00059

[26] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin
Shi, Antoine Atallah, Ralf Herbrich, Stuart Bowers, and Joaquin
Quiñonero Candela. 2014. Practical Lessons from Predicting Clicks
on Ads at Facebook. In Proceedings of the International Workshop on
Data Mining for Online Advertising (ADKDD). https://doi.org/10.1145/
2648584.2648589

[27] Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András
Horányi, JoaquínMuñoz-Sabater, Julien Nicolas, Carole Peubey, Raluca
Radu, Dinand Schepers, Adrian Simmons, Cornel Soci, Saleh Ab-
dalla, Xavier Abellan, Gianpaolo Balsamo, Peter Bechtold, Gionata Bi-
avati, Jean Bidlot, Massimo Bonavita, Giovanna Chiara, Per Dahlgren,
Dick Dee, Michail Diamantakis, Rossana Dragani, Johannes Flem-
ming, Richard Forbes, Manuel Fuentes, Alan Geer, Leo Haimberger,
Sean Healy, Robin J. Hogan, Elías Hólm, Marta Janisková, Sarah
Keeley, Patrick Laloyaux, Philippe Lopez, Cristina Lupu, Gabor Rad-
noti, Patricia Rosnay, Iryna Rozum, Freja Vamborg, Sebastien Vil-
laume, and Jean-Noël Thépaut. 2020. The ERA5 global reanalysis.
Quarterly Journal of the Royal Meteorological Society 146, 730 (2020).
https://doi.org/10.1002/qj.3803

[28] Chip Huyen. 2020. Machine learning is going real-time. https://
huyenchip.com/2020/12/27/real-time-machine-learning.html.

[29] Chip Huyen. 2022. Designing Machine Learning Systems. O’Reilly
Media, Inc.

[30] Chip Huyen. 2022. Real-time machine learning: challenges and solu-
tions. https://huyenchip.com/2022/01/02/real-time-machine-learning-
challenges-and-solutions.html.

15

https://doi.org/10.1109/cvpr46437.2021.00812
https://doi.org/10.1109/cvpr46437.2021.00812
https://doi.org/10.48550/ARXIV.2001.08435
https://www.usenix.org/conference/opml19/presentation/baylor
https://www.usenix.org/conference/opml19/presentation/baylor
https://github.com/bentoml/
https://github.com/bentoml/
https://www.usenix.org/conference/nsdi22/presentation/bhardwaj
https://www.wandb.com/
https://doi.org/10.1109/sp40001.2021.00019
https://doi.org/10.1109/sp40001.2021.00019
https://doi.org/10.1109/cvpr42600.2020.01164
https://doi.org/10.1109/cvpr42600.2020.01164
https://proceedings.neurips.cc/paper/2000/hash/155fa09596c7e18e50b58eb7e0c6ccb4-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/155fa09596c7e18e50b58eb7e0c6ccb4-Abstract.html
https://doi.org/10.1145/3399579.3399867
https://doi.org/10.1109/cvpr.2016.350
https://doi.org/10.1109/cvpr.2016.350
https://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/ARXIV.1903.05202
https://doi.org/10.48550/ARXIV.1903.05202
https://doi.org/10.1145/3460231.3474599
https://gdpr.eu/article-17-right-to-be-forgotten/
https://www.usenix.org/conference/opml20/presentation/farabet
https://www.usenix.org/conference/opml20/presentation/farabet
https://feast.dev/
https://feast.dev/
https://doi.org/10.1145/2523813
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1145/2648584.2648589
https://doi.org/10.1145/2648584.2648589
https://doi.org/10.1002/qj.3803
https://huyenchip.com/2020/12/27/real-time-machine-learning.html
https://huyenchip.com/2020/12/27/real-time-machine-learning.html
https://huyenchip.com/2022/01/02/real-time-machine-learning-challenges-and-solutions.html
https://huyenchip.com/2022/01/02/real-time-machine-learning-challenges-and-solutions.html


Towards A Platform and Benchmark Suite for Model Training on Dynamic Datasets EuroMLSys ’23, May 8, 2023, Rome, Italy

[31] Ruoxi Jia, Fan Wu, Xuehui Sun, Jiacen Xu, David Dao, Bhavya
Kailkhura, Ce Zhang, Bo Li, and Dawn Song. 2021. Scalability vs.
Utility: Do We Have to Sacrifice One for the Other in Data Importance
Quantification?. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/
cvpr46437.2021.00814

[32] Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. 2020.
Model Assertions for Monitoring and Improving ML Models. In Pro-
ceedings of Machine Learning and Systems (MLSys). https://proceedings.
mlsys.org/book/319.pdf

[33] Angelos Katharopoulos and François Fleuret. 2018. Not All Samples
Are Created Equal: Deep Learning with Importance Sampling. In Pro-
ceedings of the International Conference on Machine Learning (ICML).
http://proceedings.mlr.press/v80/katharopoulos18a.html

[34] Hyunseo Koh, Dahyun Kim, Jung-Woo Ha, and Jonghyun Choi. 2022.
Online Continual Learning on Class Incremental Blurry Task Config-
uration with Anytime Inference. In Proceedings of the International
Conference on Learning Representations (ICLR). https://openreview.
net/forum?id=nrGGfMbY_qK

[35] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie,
Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Ya-
sunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne David,
Ian Stavness, Wei Guo, Berton A. Earnshaw, Imran S. Haque, Sara
Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine,
Chelsea Finn, and Percy Liang. 2021. WILDS: A Benchmark of in-
the-Wild Distribution Shifts. In International Conference on Machine
Learning (ICML). https://proceedings.mlr.press/v139/koh21a.html

[36] Akinwande Komolafe. 2023. Retraining Model During De-
ployment: Continuous Training and Continuous Testing.
https://neptune.ai/blog/retraining-model-during-deployment-
continuous-training-continuous-testing.

[37] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers
of features from tiny images. Technical Report. University of Toronto,
Toronto, Ontario. https://www.cs.toronto.edu/~kriz/learning-features-
2009-TR.pdf

[38] Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gribovskaya, Devang
Agrawal, Adam Liska, Tayfun Terzi, Mai Gimenez, Cyprien de Mas-
son d’Autume, Tomás Kociský, Sebastian Ruder, Dani Yogatama, Kris
Cao, Susannah Young, and Phil Blunsom. 2021. Mind the Gap: As-
sessing Temporal Generalization in Neural Language Models. In
Proceedings of the Conference on Neural Information Processing Sys-
tems (NeurIPS). https://proceedings.neurips.cc/paper/2021/hash/
f5bf0ba0a17ef18f9607774722f5698c-Abstract.html

[39] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based learning applied to document recognition. Proc. IEEE
86, 11 (1998). https://doi.org/10.1109/5.726791

[40] Aodong Li, Alex Boyd, Padhraic Smyth, and Stephan Mandt. 2021.
Detecting and Adapting to Irregular Distribution Shifts in Bayesian
Online Learning. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS). https://proceedings.neurips.cc/paper/
2021/hash/362387494f6be6613daea643a7706a42-Abstract.html

[41] Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio
Carta, Gabriele Graffieti, Tyler L. Hayes, Matthias De Lange, Marc
Masana, Jary Pomponi, Gido M. van de Ven, Martin Mundt, Qi She,
Keiland Cooper, Jeremy Forest, Eden Belouadah, Simone Calderara,
German Ignacio Parisi, Fabio Cuzzolin, Andreas S. Tolias, Simone
Scardapane, Luca Antiga, Subutai Ahmad, Adrian Popescu, Christo-
pher Kanan, Joost van de Weijer, Tinne Tuytelaars, Davide Bacciu,
and Davide Maltoni. 2021. Avalanche: An End-to-End Library for
Continual Learning. In Workshop Proceedings of the Conference on
Computer Vision and Pattern Recognition Workshops (CVPR). https:
//doi.org/10.1109/CVPRW53098.2021.00399

[42] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradi-
ent Episodic Memory for Continual Learning. In Proceed-
ings of Advances in Neural Information Processing Systems
(NeurIPS). https://proceedings.neurips.cc/paper/2017/hash/
f87522788a2be2d171666752f97ddebb-Abstract.html

[43] Andrey Malinin, Neil Band, Yarin Gal, Mark J. F. Gales, Alexander
Ganshin, German Chesnokov, Alexey Noskov, Andrey Ploskonosov,
Liudmila Prokhorenkova, Ivan Provilkov, Vatsal Raina, Vyas
Raina, Denis Roginskiy, Mariya Shmatova, Panagiotis Tigas,
and Boris Yangel. 2021. Shifts: A Dataset of Real Distri-
butional Shift Across Multiple Large-Scale Tasks. In Proceed-
ings of the Conference on Neural Information Processing Systems
(NeurIPS) (Benchmark Track), Joaquin Vanschoren and Sai-Kit Yeung
(Eds.). https://datasets-benchmarks-proceedings.neurips.cc/paper/
2021/hash/ad61ab143223efbc24c7d2583be69251-Abstract-round2.html

[44] Ankur Mallick, Kevin Hsieh, Behnaz Arzani, and Gauri Joshi.
2022. Matchmaker: Data Drift Mitigation in Machine Learning
for Large-Scale Systems. In Proceedings of Machine Learning and
Systems (MLSys). https://proceedings.mlsys.org/paper/2022/hash/
1c383cd30b7c298ab50293adfecb7b18-Abstract.html

[45] Sören Mindermann, Jan Markus Brauner, Muhammed Razzak, Mri-
nank Sharma, Andreas Kirsch, Winnie Xu, Benedikt Höltgen, Aidan N.
Gomez, Adrien Morisot, Sebastian Farquhar, and Yarin Gal. 2022. Prior-
itized Training on Points that are Learnable, Worth Learning, and not
yet Learnt. In Proceedings of the International Conference on Machine
Learning (ICML). https://proceedings.mlr.press/v162/mindermann22a.
html

[46] Baharan Mirzasoleiman, Jeff A. Bilmes, and Jure Leskovec. 2020. Core-
sets for Data-efficient Training of Machine Learning Models. In Pro-
ceedings of the International Conference on Machine Learning (ICML).
http://proceedings.mlr.press/v119/mirzasoleiman20a.html

[47] Akshay NareshModi, Chiu Yuen Koo, Chuan Yu Foo, Clemens Mewald,
DenisM. Baylor, Eric Breck, Heng-Tze Cheng, JarekWilkiewicz, Levent
Koc, Lukasz Lew, Martin A. Zinkevich, Martin Wicke, Mustafa Ispir,
Neoklis Polyzotis, Noah Fiedel, Salem Elie Haykal, Steven Whang,
Sudip Roy, Sukriti Ramesh, Vihan Jain, Xin Zhang, and Zakaria Haque.
2017. TFX: A TensorFlow-Based Production-Scale Machine Learning
Platform. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining (KDD). https://doi.org/10.1145/3097983.
3098021

[48] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and
Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. (2019). https:
//doi.org/10.48550/ARXIV.1906.00091

[49] Neptune. 2023. Neptune.ai ML Metadata Store. https://neptune.ai/.
[50] NVIDIA. 2023. NVIDIA DLRM Example Implementation.

https://github.com/NVIDIA/DeepLearningExamples/tree/master/
PyTorch/Recommendation/DLRM. Accessed: 2023-03-08.

[51] NVIDIA. 2023. NVIDIA Triton Inference Server. https://developer.
nvidia.com/nvidia-triton-inference-server. Accessed: 2023-03-09.

[52] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D. Lawrence. 2022. Chal-
lenges in Deploying Machine Learning: A Survey of Case Studies.
Comput. Surveys 55, 6 (2022). https://doi.org/10.1145/3533378

[53] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev
Raja, Ashesh Chattopadhyay, Morteza Mardani, Thorsten Kurth,
David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram Hassanzadeh,
Karthik Kashinath, and Animashree Anandkumar. 2022. FourCastNet:

16

https://doi.org/10.1109/cvpr46437.2021.00814
https://doi.org/10.1109/cvpr46437.2021.00814
https://proceedings.mlsys.org/book/319.pdf
https://proceedings.mlsys.org/book/319.pdf
http://proceedings.mlr.press/v80/katharopoulos18a.html
https://openreview.net/forum?id=nrGGfMbY_qK
https://openreview.net/forum?id=nrGGfMbY_qK
https://proceedings.mlr.press/v139/koh21a.html
https://neptune.ai/blog/retraining-model-during-deployment-continuous-training-continuous-testing
https://neptune.ai/blog/retraining-model-during-deployment-continuous-training-continuous-testing
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.neurips.cc/paper/2021/hash/f5bf0ba0a17ef18f9607774722f5698c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f5bf0ba0a17ef18f9607774722f5698c-Abstract.html
https://doi.org/10.1109/5.726791
https://proceedings.neurips.cc/paper/2021/hash/362387494f6be6613daea643a7706a42-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/362387494f6be6613daea643a7706a42-Abstract.html
https://doi.org/10.1109/CVPRW53098.2021.00399
https://doi.org/10.1109/CVPRW53098.2021.00399
https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ad61ab143223efbc24c7d2583be69251-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ad61ab143223efbc24c7d2583be69251-Abstract-round2.html
https://proceedings.mlsys.org/paper/2022/hash/1c383cd30b7c298ab50293adfecb7b18-Abstract.html
https://proceedings.mlsys.org/paper/2022/hash/1c383cd30b7c298ab50293adfecb7b18-Abstract.html
https://proceedings.mlr.press/v162/mindermann22a.html
https://proceedings.mlr.press/v162/mindermann22a.html
http://proceedings.mlr.press/v119/mirzasoleiman20a.html
https://doi.org/10.1145/3097983.3098021
https://doi.org/10.1145/3097983.3098021
https://doi.org/10.48550/ARXIV.1906.00091
https://doi.org/10.48550/ARXIV.1906.00091
https://neptune.ai/
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/DLRM
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Recommendation/DLRM
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://doi.org/10.1145/3533378


EuroMLSys ’23, May 8, 2023, Rome, Italy Maximilian Böther, Foteini Strati, Viktor Gsteiger, and Ana Klimovic

A Global Data-driven High-resolution Weather Model using Adaptive
Fourier Neural Operators. https://doi.org/10.48550/ARXIV.2202.11214

[54] Robi Polikar, Lalita Upda, Satish S. Upda, and Vasant Honavar. 2001.
Learn++: an incremental learning algorithm for supervised neural
networks. IEEE Transactions on Systems, Man and Cybernetics, Part C
31, 4 (2001). https://doi.org/10.1109/5326.983933

[55] Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. 2022.
Adaptive Second Order Coresets for Data-efficient Machine Learning.
In Proceedings of the International Conference on Machine Learning
(ICML). https://proceedings.mlr.press/v162/pooladzandi22a.html

[56] Ameya Prabhu, Philip H. S. Torr, and Puneet K. Dokania. 2020. GDumb:
A Simple Approach thatQuestions Our Progress in Continual Learning.
In Proceedings of the European Conference on Computer Vision (ECCV).
https://doi.org/10.1007/978-3-030-58536-5_31

[57] PyTorch Serve Contributors. 2020. TorchServe: Docs. https://pytorch.
org/serve/. Accessed: 2023-03-09.

[58] Stephan Rabanser, Stephan Günnemann, and Zachary C. Lipton. 2019.
Failing Loudly: An Empirical Study of Methods for Detecting Dataset
Shift. In Proceedings of the Conference on Neural Information Processing
Systems (NeurIPS). https://proceedings.neurips.cc/paper/2019/hash/
846c260d715e5b854ffad5f70a516c88-Abstract.html

[59] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016.
You Only Look Once: Unified, Real-Time Object Detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). https://doi.org/10.1109/cvpr.2016.91

[60] Sebastian Schelter, Felix Bießmann, Tim Januschowski, David Salinas,
Stephan Seufert, and Gyuri Szarvas. 2018. On Challenges in Machine
Learning Model Management. IEEE Data Engineering Bulletin 41, 4
(2018). http://sites.computer.org/debull/A18dec/p5.pdf

[61] Shreya Shankar, Bernease Herman, and Aditya G. Parameswaran. 2022.
Rethinking Streaming Machine Learning Evaluation. In Proceedings
of the ML Evaluation Standards Workshop at ICLR. https://doi.org/10.
48550/arXiv.2205.11473

[62] Chijun Sima, Yao Fu, Man-Kit Sit, Liyi Guo, Xuri Gong, Feng Lin,
Junyu Wu, Yongsheng Li, Haidong Rong, Pierre-Louis Aublin, and
Luo Mai. 2022. Ekko: A Large-Scale Deep Learning Recommender
System with Low-Latency Model Update. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
https://www.usenix.org/conference/osdi22/presentation/sima

[63] State of California, USA. 2018. Section 1798.130 CCPA. https://ccpa-
info.com/california-consumer-privacy-act-full-text/.

[64] Nils Strassenburg, Dominic Kupfer, Julia Kowal, and Tilmann Rabl.
2023. Efficient Multi-Model Management. In Proceedings International
Conference on Extending Database Technology, (EDBT). https://doi.org/
10.48786/edbt.2023.37

[65] Nils Strassenburg, Ilin Tolovski, and Tilmann Rabl. 2022. Efficiently
Managing Deep Learning Models in a Distributed Environment. https:
//doi.org/10.48786/EDBT.2022.12

[66] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vi-
jaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin
Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei
Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi,
Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov.
2020. Scalability in Perception for Autonomous Driving: Waymo Open
Dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR42600.
2020.00252

[67] Abhijit Suprem, Joy Arulraj, Calton Pu, and Joao Ferreira. 2020. ODIN:
Automated drift detection and recovery in video analytics. Proceedings
of the VLDB Endowment 13, 12 (2020). https://doi.org/10.14778/3407790.
3407837

[68] Ashraf Tahmasbi, Ellango Jothimurugesan, Srikanta Tirthapura, and
Phillip B. Gibbons. 2021. DriftSurf: Stable-State / Reactive-State Learn-
ing under Concept Drift. In Proceedings of the International Confer-
ence on Machine Learning (ICML). http://proceedings.mlr.press/v139/
tahmasbi21a.html

[69] Tesla. 2019. Tesla Autonomy Day. https://www.youtube.com/watch?
v=Ucp0TTmvqOE&t=6678s.

[70] Josh Tobin. 2021. Toward continual learning systems. https://gantry.
io/blog/toward-continual-learning-systems/.

[71] Daniel Vela, Andrew Sharp, Richard Zhang, Trang Nguyen, An Hoang,
and Oleg S. Pianykh. 2022. Temporal quality degradation in AI models.
Scientific Reports 12, 1 (2022). https://doi.org/10.1038/s41598-022-
15245-z

[72] Larysa Visengeriyeva, Anja Kammer, Isabel Bär, Alexander Kniesz,
and Michael Plöd. 2023. MLOps Infrastructure Stack. https://ml-
ops.org/content/state-of-mlops.

[73] Steve Wang and Will Cukierski. 2014. The Avazu Click-Through
Rate Prediction Dataset. https://kaggle.com/competitions/avazu-
ctr-prediction

[74] Weights&Biases. 2023. W&B: Dataset Versioning. https:
//docs.wandb.ai/guides/data-and-model-versioning/dataset-
versioning#25c79f05-174e-4d35-abda-e5c238b8d6d6.

[75] Yufeng Cai Kaixu Ren Pengjie Wang Huimin Yi Yue Song Jing Chen
Hongbo Deng Jian Xu Lin Qu Bo Zheng Wenbo Su, Yuanxing Zhang.
2022. GBA: A Tuning-free Approach to Switch between Synchro-
nous and Asynchronous Training for Recommendation Models. In
Proceedings of Advances in Neural Information Processing Systems
(NeurIPS). https://proceedings.neurips.cc/paper_files/paper/2022/
hash/be0a8ecf8b2743a4117557c5eca0fb79-Abstract-Conference.html

[76] Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma,
and Liang He. 2022. A survey of human-in-the-loop for machine
learning. Future Generation Computer Systems 135 (2022). https:
//doi.org/10.1016/j.future.2022.05.014

[77] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu,
Yandong Guo, and Yun Fu. 2019. Large Scale Incremental Learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). https://doi.org/10.1109/cvpr.2019.00046

[78] Huaxiu Yao, Caroline Choi, Bochuan Cao, Yoonho Lee, Pang Wei
Koh, and Chelsea Finn. 2022. Wild-Time: A Benchmark of in-the-
Wild Distribution Shift over Time. In Proceedings of the Conference on
Neural Information Processing Systems (NeurIPS) (Benchmark Track).
https://openreview.net/forum?id=F9ENmZABB0

[79] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gon-
zalez, Scott Shenker, and Ion Stoica. 2016. Apache Spark: a unified
engine for big data processing. Commun. ACM 59, 11 (2016), 56–65.
https://doi.org/10.1145/2934664

[80] Giovanni Zappella, Martin Wistuba, Lukas Balles, and Cedric
Archambeau. 2022. Automatically retrain neural networks
with Renate. https://aws.amazon.com/de/blogs/machine-learning/
automatically-retrain-neural-networks-with-renate/.

[81] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan,
Mustafa Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei
Lu, Sundaram Narayanan, Jack Langman, Kevin Wilfong, Harsha Ras-
togi, Carole-Jean Wu, Christos Kozyrakis, and Parik Pol. 2022. Un-
derstanding Data Storage and Ingestion for Large-Scale Deep Recom-
mendation Model Training. In Proceedings of the Annual International
Symposium on Computer Architecture (ISCA). https://doi.org/10.1145/
3470496.3533044

17

https://doi.org/10.48550/ARXIV.2202.11214
https://doi.org/10.1109/5326.983933
https://proceedings.mlr.press/v162/pooladzandi22a.html
https://doi.org/10.1007/978-3-030-58536-5_31
https://pytorch.org/serve/
https://pytorch.org/serve/
https://proceedings.neurips.cc/paper/2019/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html
https://doi.org/10.1109/cvpr.2016.91
http://sites.computer.org/debull/A18dec/p5.pdf
https://doi.org/10.48550/arXiv.2205.11473
https://doi.org/10.48550/arXiv.2205.11473
https://www.usenix.org/conference/osdi22/presentation/sima
https://ccpa-info.com/california-consumer-privacy-act-full-text/
https://ccpa-info.com/california-consumer-privacy-act-full-text/
https://doi.org/10.48786/edbt.2023.37
https://doi.org/10.48786/edbt.2023.37
https://doi.org/10.48786/EDBT.2022.12
https://doi.org/10.48786/EDBT.2022.12
https://doi.org/10.1109/CVPR42600.2020.00252
https://doi.org/10.1109/CVPR42600.2020.00252
https://doi.org/10.14778/3407790.3407837
https://doi.org/10.14778/3407790.3407837
http://proceedings.mlr.press/v139/tahmasbi21a.html
http://proceedings.mlr.press/v139/tahmasbi21a.html
https://www.youtube.com/watch?v=Ucp0TTmvqOE&t=6678s
https://www.youtube.com/watch?v=Ucp0TTmvqOE&t=6678s
https://gantry.io/blog/toward-continual-learning-systems/
https://gantry.io/blog/toward-continual-learning-systems/
https://doi.org/10.1038/s41598-022-15245-z
https://doi.org/10.1038/s41598-022-15245-z
https://ml-ops.org/content/state-of-mlops
https://ml-ops.org/content/state-of-mlops
https://kaggle.com/competitions/avazu-ctr-prediction
https://kaggle.com/competitions/avazu-ctr-prediction
https://docs.wandb.ai/guides/data-and-model-versioning/dataset-versioning#25c79f05-174e-4d35-abda-e5c238b8d6d6
https://docs.wandb.ai/guides/data-and-model-versioning/dataset-versioning#25c79f05-174e-4d35-abda-e5c238b8d6d6
https://docs.wandb.ai/guides/data-and-model-versioning/dataset-versioning#25c79f05-174e-4d35-abda-e5c238b8d6d6
https://proceedings.neurips.cc/paper_files/paper/2022/hash/be0a8ecf8b2743a4117557c5eca0fb79-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/be0a8ecf8b2743a4117557c5eca0fb79-Abstract-Conference.html
https://doi.org/10.1016/j.future.2022.05.014
https://doi.org/10.1016/j.future.2022.05.014
https://doi.org/10.1109/cvpr.2019.00046
https://openreview.net/forum?id=F9ENmZABB0
https://doi.org/10.1145/2934664
https://aws.amazon.com/de/blogs/machine-learning/automatically-retrain-neural-networks-with-renate/
https://aws.amazon.com/de/blogs/machine-learning/automatically-retrain-neural-networks-with-renate/
https://doi.org/10.1145/3470496.3533044
https://doi.org/10.1145/3470496.3533044

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Dynamic Datasets
	2.2 ML Theory Perspective
	2.3 (Lack of) System Support

	3 Designing a Platform for ML on Dynamic Datasets
	3.1 Modeling the Training Process
	3.2 Platform Architecture
	3.3 Pipeline User API
	3.4 Component Overview

	4 Initial Experience
	5 Towards a Benchmark Suite
	6 Open Research Questions
	7 Conclusion
	References

